OZZZпечать. Экзаменационные вопросы по общественному здоровью и здравоохранению
Скачать 466.64 Kb.
|
81. Среднее квадратическое отклонение, методика расчета, применение. Приближенный метод оценки колеблемости вариационного ряда - определение лимита и амплитуды, однако не учитывают значений вариант внутри ряда. Основной общепринятой мерой колеблемости количественного признака в пределах вариационного ряда является среднее квадратическое отклонение (σ - сигма). Чем больше среднее квадратическое отклонение, тем степень колеблемости данного ряда выше. Методика расчета среднего квадратического отклонения включает следующие этапы: 1. Находят среднюю арифметическую величину (Μ). 2. Определяют отклонения отдельных вариант от средней арифметической (d=V-M). В медицинской статистике отклонения от средней обозначаются как d (deviate). Сумма всех отклонений равняется нулю. 3. Возводят каждое отклонение в квадрат d2. 4. Перемножают квадраты отклонений на соответствующие частоты d2*p. 5. Находят сумму произведений ( d2*p) 6. Вычисляют среднее квадратическое отклонение по формуле: при n больше 30,или при n меньше либо равно 30, где n - число всех вариант. Значение среднего квадратичного отклонения: 1. Среднее квадратическое отклонение характеризует разброс вариант относительно средней величины (т.е. колеблемость вариационного ряда). Чем больше сигма, тем степень разнообразия данного ряда выше. 2. Среднее квадратичное отклонение используется для сравнительной оценки степени соответствия средней арифметической величины тому вариационному ряду, для которого она вычислена. Вариации массовых явлений подчиняются закону нормального распределения. Кривая, отображающая это распределение, имеет вид плавной колоколообразной симметричной кривой (кривая Гаусса). Согласно теории вероятности в явлениях, подчиняющихся закону нормального распределения, между значениями средней арифметической и среднего квадратического отклонения существует строгая математическая зависимость. Теоретическое распределение вариант в однородном вариационном ряду подчиняется правилу трех сигм. Если в системе прямоугольных координат на оси абсцисс отложить значения количественного признака (варианты), а на оси ординат - частоты встречаемости вариант в вариационном ряду, то по сторонам от средней арифметической равномерно располагаются варианты с большими и меньшими значениями. Установлено, что при нормальном распределении признака: - 68,3% значений вариант находится в пределах М1 - 95,5% значений вариант находится в пределах М2 - 99,7% значений вариант находится в пределах М3 3. Среднее квадратическое отлонение позволяет установить значения нормы для клинико-биологических показателей. В медицине интервал М1 обычно принимается за пределы нормы для изучаемого явления. Отклонение оцениваемой величины от средней арифметической больше, чем на 1 указывает на отклонение изучаемого параметра от нормы. 4. В медицине правило трех сигм применяется в педиатрии для индивидуальной оценки уровня физического развития детей (метод сигмальных отклонений), для разработки стандартов детской одежды 5. Среднее квадратическое отклонение необходимо для характеристики степени разнообразия изучаемого признака и вычисления ошибки средней арифметической величины. Величина среднего квадратического отклонения обычно используется для сравнения колеблемости однотипных рядов. Если сравниваются два ряда с разными признаками (рост и масса тела, средняя длительность лечения в стационаре и больничная летальность и т.д.), то непосредственное сопоставление размеров сигм невозможно, т.к. среднеквадратическое отклонение - именованная величина, выраженная в абсолютных числах. В этих случаях применяют коэффициент вариации (Cv), представляющий собой относительную величину: процентное отношение среднего квадратического отклонения к средней арифметической. Коэффициент вариации вычисляется по формуле: Чем выше коэффициент вариации, тем большая изменчивость данного ряда. Считают, что коэффициент вариации свыше 30 % свидетельствует о качественной неоднородности совокупности. 17. Ошибка репрезентативности, методика расчета ошибки средней и относительной величины В статистике выделяют два основных метода исследования - сплошной и выборочный. При проведении выборочного исследования обязательным является соблюдение следующих требований: репрезентативность выборочной совокупности и достаточное число единиц наблюдений. При выборе единиц наблюдения возможны ошибки смещения, т.е. такие события, появление которых не может быть точно предсказуемым. Эти ошибки являются объективными и закономерными. При определении степени точности выборочного исследования оценивается величина ошибки, которая может произойти в процессе выборки - случайная ошибка репрезентативности (m) - является фактической разностью между средними или относительными величинами, полученными при проведении выборочного исследования и аналогичными величинами, которые были бы получены при проведении исследования на генеральной совокупности. Оценка достоверности результатов исследования предусматривает определение: 1. ошибки репрезентативности 2. доверительных границ средних (или относительных) величин в генеральной совокупности 3. достоверности разности средних (или относительных) величин (по критерию t) Расчет ошибки репрезентативности (mм) средней арифметической величины (М): , где σ - среднее квадратическое отклонение; n - численность выборки (>30). Расчет ошибки репрезентативности (mР) относительной величины (Р): , где Р - соответствующая относительная величина (рассчитанная, например, в %); q =100 - Ρ% - величина, обратная Р; n - численность выборки (n>30) В клинических и экспериментальных работах довольно часто приходится использовать малую выборку, когда число наблюдений меньше или равно 30. При малой выборке для расчета ошибок репрезентативности, как средних, так и относительных величин, число наблюдений уменьшается на единицу, т.е. ; . Величина ошибки репрезентативности зависит от объема выборки: чем больше число наблюдений, тем меньше ошибка. Для оценки достоверности выборочного показателя принят следующий подход: показатель (или средняя величина) должен в 3 раза превышать свою ошибку, в этом случае он считается достоверным. 83. Определение доверительных границ средних и относительных величин. Знание величины ошибки недостаточно для того, чтобы быть уверенным в результатах выборочного исследования, так как конкретная ошибка выборочного исследования может быть значительно больше (или меньше) величины средней ошибки репрезентативности. Для определения точности, с которой исследователь желает получить результат, в статистике используется такое понятие, как вероятность безошибочного прогноза, которая является характеристикой надежности результатов выборочных медико-биологических статистических исследований. Обычно, при проведении медико-биологических статистических исследований используют вероятность безошибочного прогноза 95% или 99%. В наиболее ответственных случаях, когда необходимо сделать особенно важные выводы в теоретическом или практическом отношении, используют вероятность безошибочного прогноза 99,7% Определенной степени вероятности безошибочного прогноза соответствует определенная величина предельной ошибки случайной выборки (Δ - дельта), которая определяется по формуле: Δ=t * m , где t - доверительный коэффициент, который при большой выборке при вероятности безошибочного прогноза 95% равен 2,6; при вероятности безошибочного прогноза 99% - 3,0; при вероятности безошибочного прогноза 99,7% - 3,3, а при малой выборке определяется по специальной таблице значений t Стьюдента. Используя предельную ошибку выборки (Δ), можно определить доверительные границы, в которых с определенной вероятностью безошибочного прогноза заключено действительное значение статистической величины, характеризующей всю генеральную совокупность (средней или относительной). Для определения доверительных границ используются следующие формулы: 1) для средних величин: ,где Мген - доверительные границы средней величины в генеральной совокупности; Мвыб- средняя величина, полученная при проведении исследования на выборочной совокупности; t - доверительный коэффициент, значение которого определяется степенью вероятности безошибочного прогноза, с которой исследователь желает получить результат; mM - ошибка репрезентативности средней величины. 2) для относительных величин: , где Рген - доверительные границы относительной величины в генеральной совокупности; Рвыб- относительная величина, полученная при проведении исследования на выборочной совокупности; t - доверительный коэффициент; mP - ошибка репрезентативности относительной величины. Доверительные границы показывают, в каких пределах может колебаться размер выборочного показателя в зависимости от причин случайного характера. При малом числе наблюдений (n<30), для вычисления доверительных границ значение коэффициента t находят по специальной таблице Стьюдента. Значения t расположены в таблице на пересечении с избранной вероятностью безошибочного прогноза и строки, указывающей на имеющееся число степеней свободы (n), которое равно n-1. 84. Оценка достоверности различий относительных и средних величин. Понятие о критерии «t» При проведении медико-биологических исследований на двух сравниваемых совокупностях возникает необходимость определить не только их различие, но и его достоверность. Метод оценки достоверности разности показателей или средних величин позволяет установить, существенны ли выявленные различия, или они являются результатом действия случайных причин. В основе метода лежит определение критерия достоверности "t", который рассчитывается по специальным формулам для средних и относительных величин: для средних:, а для относительных величин , где Μ1, Μ2, P1 и P2 - статистические величины, полученные при проведении выборочных исследований: m1 и m2 - их ошибки репрезентативности; t - коэффициент достоверности. При большой выборке различие достоверно при t>2, что соответствует вероятности безошибочного прогноза равной или более 95%. При величине коэффициента достоверности t<2 степень вероятности безошибочного прогноза менее 95%. При такой степени вероятности мы не можем утверждать, что полученная разность показателей достоверна с достаточной степенью вероятности. В этом случае необходимо получить дополнительные данные, увеличив число наблюдений. Если после увеличения численности выборки, и, соответственно, уменьшения ошибки репрезентативности, различие продолжает оставаться недостоверным, можно считать доказанным, что между сравниваемыми совокупностями не обнаружено различий по изучаемому признаку. Для определения достоверности различий между двумя показателями или средними величинами при малом числе наблюдений критерий достоверности оценивается по таблице значений критерия t Стьюдента по числу степеней свободы, которое при этом определяется как сумма чисел наблюдений в каждой группе без двух. 13. Графические изображения в статистике. Виды диаграмм, правила их построения и оформления. Результаты статистического исследования могут быть представлены в виде графических изображений, что позволяет более наглядно продемонстрировать полученные результаты и облегчает проведение анализа. Существует несколько видов графических изображений, наиболее часто используют диаграммы (линейные, радиальные, столбиковые, ленточные, гистограммы, секторные и др.), картограммы, картодиаграммы. При построении графических изображений необходимо соблюдать следующие правила: - данные на графике должны размещаться слева направо и снизу вверх; - обязательное условие при построении графика - соблюдение масштабности; - нулевые точки шкал при наличии возможности должны быть изображены на диаграмме - цифры, показывающие деление шкал, помещаются слева или внизу соответствующей шкалы; - линии, представляющие диаграмму изображаемого явления, следует делать иного вида, нежели вспомогательные линии; - на кривой, отражающей динамику явления, необходимо отметить все точки, соответствующие отдельным наблюдениям; - в диаграммах, показывающих структуру, должна быть оттенена как линия нулевая, так и 100-процентная; - изображенные графические величины должны иметь цифровые обозначения на самом графике или в прилагаемой к нему таблице; - символы, используемые при построении диаграммы (цвет, штриховка, фигуры, знаки), должны быть пояснены; - каждый график должен иметь четкое, краткое название, отражающее его содержание; - название диаграммы должно размешаться под рисунком. Виды диаграмм: а) линейные диаграммы - позволяют изображать динамику явления (изменение показателей во времени). Линейная диаграмма строится в системе прямоугольных координат, при ее построении следует учитывать соотношение между основанием и высотой - абсциссой х и ординатой у, основанное на принципе "золотого сечения": это соотношение должно быть 1,6:1. На горизонтальной оси (оси абсцисс) откладываются отрезки, обозначающие периоды времени. На вертикальной оси (оси ординат) откладываются размеры изучаемого явления. Обязательное условие при построении графика - масштабность. На одной диаграмме можно изобразить несколько линий, отличающихся друг от друга цветом, толщиной или формой пунктира. б) радиальные диаграммы (диаграммы полярных координат, линейно-круговые диаграммы, векторные диаграммы) - применяются для изображения сезонных (подекадных, помесячных, поквартальных) и других колебаний, имеющих замкнутый, циклический характер (за сутки, неделю и т.д.). Для их построения круг делится на столько секторов, на сколько частей разделен период времени, взятый для изучения явления (например, на 12 - при изучении помесячных колебаний в течение года; на 7 - при изучении явления за неделю). На каждом из радиусов с соблюдением масштабности отмечаются показатели, полученные точки соединяют прямыми линиями. Начало маркировки радиусов начинается с радиуса, соответствующего нулю градусов, и продолжается по часовой стрелке. в) столбиковые диаграммы - строятся по такому же принципу, как и линейные, в системе координат, с соблюдением масштабности, но в которых вертикально или горизонтально проводимым линиям соответствуют прямоугольники. Эти диаграммы используются для изображения сравнительной величины явления в какой-либо определенный промежуток времени, например, сравнительной численности населения по странам мира; обеспеченности населения врачами в разные годы и т.д. г) гистограммы - в виде прямоугольников, треугольников, фигур позволяют изобразить однородные статистические показатели, не связанные друг с другом. Эти диаграммы используются для графического изображения статистических величин, характеризующих статику явления в разных совокупностях. Они также строятся в системе прямоугольных координат с соблюдением масштабности. Например, гистограммы применяются для графического изображения уровней смертности в разных возрастных группах населения; для демонстрации показателей больничной летальности в различных стационарах города; для изображения распространенности туберкулеза в различных социально-бытовых группах населения и т.д. д) секторные диаграммы - используются для демонстрации структуры изучаемого явления, изображения части явления в целом. Они представляют собой круг, принимаемый за целое (100%), в котором отдельные секторы соответствуют частям изображаемого явления. Этот вид диаграмм применяется для графического изображения экстенсивных показателей. В секторных диаграммах секторы, изображающие отдельные части изучаемого явления, располагаются в порядке возрастания или убывания по движению часовой стрелки и имеют разный цвет или штриховку. е) внутристолбиковые диаграммы также могут применяться для изображения структуры явления. При этом высота столбика принимается за 100%, весь столбик делится на составные части, которые соответствуют долям явления в процентах ж) картограммы - это графические изображения, нанесенные на схемы географической карты, на которой различным цветом или штриховкой изображены степени распространенности явления по территории з) картодиаграммы - такие графические изображения, при построении которых на карту или схему карты изучаемой территории проставляются диаграммы (столбиковые, фигурные, линейные) 2> |