Главная страница
Навигация по странице:

  • Формула подъемной силы. Только ли площадь крыла учитывается Нарисовать график зависимости коэффициента подъёмной силы от угла атаки.

  • этапы отбора и ответы. Этапы отбора и ответы. REV2. Этапы отбора в Аэрофлот


    Скачать 7.89 Mb.
    НазваниеЭтапы отбора в Аэрофлот
    Анкорэтапы отбора и ответы
    Дата11.02.2020
    Размер7.89 Mb.
    Формат файлаdocx
    Имя файлаЭтапы отбора и ответы. REV2.docx
    ТипДокументы
    #107966
    страница29 из 57
    1   ...   25   26   27   28   29   30   31   32   ...   57

    Скороподъёмность и градиент набора высоты - различия, формулы



    1. Что такое демпфирующий момент?


    https://ru.wikipedia.org/wiki/Демпфирующий_момент

    При вращательном движении тела в воздушной среде, сопротивление воздушной среды вращению проявляется в виде аэродинамического момента сопротивления вращению, который называют демпфирующий момент.

    Демпфирующий момент всегда направлен в сторону противоположную вращению и стремится погасить угловую скорость вращения.
    1. Что такое сжимаемость воздуха?


    Сжимаемость — свойство вещества изменять свой объём под действием всестороннего равномерного внешнего давления. 
    1. Назначение, устройство "Speed brakes".


    https://ru.wikipedia.org/wiki/%D0%90%D1%8D%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%82%D0%BE%D1%80%D0%BC%D0%BE%D0%B7

    https://skybrary.aero/index.php/Spoilers_And_Speedbrakes
    1. Cваливание, суть явления, как развивается


    Сва́ливание — резкое падение подъёмной силы в результате нарушения нормальных условий обтекания крыла воздушным потоком (срыва потока с крыла).

    В условиях нормального обтекания крыла потоком воздуха создается достаточная подъёмная сила, и самолёт ведёт себя устойчиво. При нарушении нормального обтекания крыла подъёмная сила резко падает, и самолёт «сваливается с потока» — самопроизвольно меняет углы тангажа и крена (опускает/задирает нос, наклоняется вбок). Сваливание с большой вероятностью может перейти в штопор. К сваливанию приводит превышение максимально допустимых углов атаки, что может произойти в результате падения скорости самолёта, работы рулями, изменения плотности и направления потока воздуха и т. п. Сваливанию может предшествовать предупредительная тряска.
    1. Штопор, флаттер, бафтинг, валежка, реверс элеронов, шимми, подхват.


    Што́пор— особый, критический режим полёта самолёта (планёра), заключающийся в его снижении по крутой нисходящей спирали малого радиуса с одновременным вращением относительно всех трёх его осей; неуправляемое движение самолёта на закритических углах атаки. При этом самолёт переходит на режим авторотации. Штопору предшествует потеря скорости и сваливание. В ряде случаев предштопорное состояние самолёта характеризуется предупредительной тряской.

    Флаттер(от англ. flutter — дрожание, вибрация) — сочетание самовозбуждающихся незатухающих изгибающих и крутящих автоколебаний элементов конструкции летательного аппарата — главным образом крыла самолёта либо несущего винта вертолёта. Как правило, флаттер проявляется при достижении некоторой критической скорости, зависящей от характеристик конструкции летательного аппарата; возникающий резонанс может привести к его разрушению. Причиной флаттера обычно является несовпадение центра жёсткости с центром давления и недостаточная жёсткость конструкции крыла.

    Виды флаттера в зависимости от наличия перемещений и вибрации органов управления:

    • безрулевые (перемещения органов управления пренебрежимо малы);

    • рулевые (наблюдаются вибрации органов управления (элеронов, руля, триммера и т. п.)).

    Бафтинг (англ. buffeting, от buffet — ударять, бить) — один из видов автоколебаний, представляющий собой вынужденные колебания всей конструкции или её частей, вызванные периодическим срывом турбулентных вихрей с расположенных впереди конструктивных элементов при их обтекании.

    Для летательных аппаратов бафтинг чаще всего проявляется как резкие неустановившиеся колебания хвостового оперения, вызванные аэродинамическими импульсами от спутной струи воздуха за крылом. Завихрения в спутной струе попадают на хвостовое оперение самолета и снижают его эффективность, вызывают тряску (явление Бафтинга).

    При достижении современными самолетами больших скоростей полета появились ранее неизвестные явления, усложняющие пилотирование самолета: «валежка», реверс элеронов, обратная реакция на дачу ног, снижение эффективности элеронов и рулей.

    Валежка обусловливается нарушением аэродинамической симметрии, потому что невозможно построить самолет с идеально одинаковыми (симметричными) по жесткости, геометрической форме правым и левым полу крыльями. Предположим, что в результате геометрической несимметрии угол атаки одного полукрыла оказался чуть больше, чем другого. Из-за отсутствия симметрии в углах атаки появится кренящий момент, для устранения которого летчик должен отклонить элероны в противоположную сторону. На больших скоростях полета, даже при незначительной разности углов атаки, кренящий момент достигает большой величины и для его парирования нужно или отклонять элероны на большой угол, или уменьшать скорость полета. Если самолет имеет неодинаковую жесткость полукрыльев, то при полете на большой приборной скорости менее жесткое крыло будет иметь большую деформацию. Если это стреловидное крыло, то деформация в виде изгиба вызывает уменьшение углов атаки, особенно ближе к концу крыла. При различной жесткости на изгиб и кручение углы атаки правого и левого полукрыльев будут изменяться на разные величины. Это в свою очередь приводит к тому, что подъемные силы крыльев будут неодинаковы. При больших приборных скоростях разница в подъемных силах становится настолько большой, что вызывает кренение самолета в сторону менее жесткого крыла. Попытка бороться с возникшей «валежкой» - отклонением элеронов - обычно не только не дает положительных результатов, а, наоборот, усугубляет ее. Такая реакция самолета связана с так называемым реверсом элеронов.

    Реверс элеронов. Под действием аэродинамических сил крыло в полете изгибается и закручивается. Кручение крыла объясняется тем, что внешняя нагрузка, действующая по линии центров давления крыла, не совпадает с так называемой осью жесткости (Рис. 148). Линия центров давления, как правило, расположена позади линии жесткости крыла, поэтому крыло закручивается на уменьшение углов атаки. У прямых крыльев это явление выражено слабее, чем у стреловидного крыла, у которого аэродинамические силы вызывают кручение и изгиб, причем последний также закручивает крыло. Отклонение элеронов смещает центр давления назад, чем еще больше закручивается стреловидное крыло. Кручение крыла за счет отклонения элеронов можетаква достигнуть такого изменения фактических углов атаки полукрыла, что подъемная сила, создаваемая элеронами ∆Уэл, будет меньше изменения подъемной силы, вызванного кручением крыла. В результате самолет будет крениться не в ту сторону, куда отклонена ручка управления, а в противоположную. Наступает так называемый реверс элеронов. Реверсом элеронов называется обратное их действие, наступающее на больших скоростях полета вследствие закручивания крыла.

    Скорость полета, при которой самолет теряет поперечную управляемость, называется скоростью реверса. Для предотвращения реверса элеронов необходимо, чтобы максимальная скорость полета была меньше скорости реверса. Понятно, что для увеличения скорости реверса необходимо увеличить жесткость крыла на кручение.



    Шимми (англ. shimmy) — автоколебания колёс шасси ЛА, возникающие вследствие неустойчивости процесса их прямолинейного качения. Явление Ш. во многом аналогично явлению флаттера. Ш. проявляется как интенсивные поперечные колебания колёс шасси при движении ЛА по земле с относительно высокой скоростью (обычно более 100 км/ч). Частота колебаний колёс при Ш. зависит от параметров опоры шасси и находится в пределах 5—25 Гц. При Ш. колёса совершают угловые колебания относительно оси, перпендикулярной плоскости земли, сочетаемые с колебаниями той же частоты в поперечном направлении. Ш. возникает под действием поперечных сил со стороны земли на шину катящегося колеса при его колебаниях. Если вектор скорости центра катящегося колеса не параллелен плоскости его симметрии, пятно контакта шины с поверхностью земли благодаря силам сцепления шины с землёй смещается в поперечном направлении, вызывая деформацию шины и реакцию на шину со стороны земли.

    Аэродинамический подхват — самопроизвольный (не связанный с действиями лётчиков) рост тангажа (угла атаки) летательного аппарата (ЛА). Эффект подхвата связан с динамической разбалансировкой ЛА по отношению к среде, в которой он перемещается (воздуху).

    Для сохранения неизменной ориентации в пространстве необходимо, чтобы векторы четырёх основных сил, действующих на ЛА в полёте (сила тяжести, подъёмная сила, тяга двигателей и лобовое сопротивление) сходились в одной точке — центре тяжести ЛА. Если геометрическая сумма этих векторов смещается от центра тяжести, ЛА начинает менять ориентацию в пространстве. Соответственно, изменение любой из этих четырёх сил может стать причиной подхвата.

    Причины возникновения подхвата:

    • Смещение центра тяжести ЛА в полёте

    Самопроизвольное перемещение груза к хвосту или неравномерная выработка топлива из носового и хвостового баков (если таковые имеются). В определённых пределах такой дисбаланс может быть скомпенсирован рулями высоты, но при значительном дисбалансе их противодействие может оказаться недостаточным, что может привести к катастрофе. Однако этот пример является частным случаем статического дисбаланса, и в авиационной практике его подхватом считать не принято.

    • Изменение тяги двигателей (мощности)

    Например, если двигатели расположены ниже оси ЛА, увеличение их тяги вызовет рост тангажа. Однако и этот пример не считается подхватом в общепринятом смысле данного термина.

    • Изменение точки приложения подъёмной силы

    Самолёт с углом стреловидности по задней и передней кромкам крыла больше 20 градусов произвольно или непроизвольно увеличил угол атаки так, что основная площадь крыла ещё находится в ламинарном потоке, но на концах крыла уже начался срыв потока. Из-за этого аэродинамический фокус смещается вперёд, тем самым увеличивая ничем не скомпенсированный момент на кабрирование. Это приводит к положительной обратной связи: больше угол атаки — больше срыв потока с концов крыла — больше момент на кабрирование — больше угол тангажа. В итоге срыв охватывает всю площадь крыла, и самолёт, в зависимости от аэродинамических свойств, либо срывается в штопор, что плохо, либо только сваливается, что тоже плохо, но лучше чем штопор.
    1. Способы борьбы с подхватом.


    Основным устройством, препятствующим эффекту подхвата ЛА, служит хвостовой (или передний — у самолётов с аэродинамической схемой «утка») стабилизатор. Находясь на расстоянии от центра тяжести (ЦТ) самолёта, он создаёт противодействующий вращательный момент при любом отклонении оси ЛА от набегающего потока. Чем дальше стабилизатор от ЦТ самолёта и чем больше его площадь — тем эффективнее он гасит дисбаланс аэродинамического сопротивления ЛА. Поэтому для подавления тенденции к подхвату надо правильно рассчитать стабилизатор ещё на этапе проектирования. Важно, чтобы при любых углах атаки он создавал больший вращающий момент, чем асимметричный корпус и стреловидное крыло вместе взятые. Только тогда ЛА будет устойчив в полёте. Кроме того, применяется отрицательная крутка крыла, за счёт которой срыв потока с корневой части крыла начинается раньше (на меньших углах атаки), чем на концевых частях. Концевые части стреловидного крыла находятся сзади от центра масс ЛА, так что при срыве потока с корневой части создаётся пикирующий момент, приводящий к уменьшению угла атаки и стабилизации воздушного судна. Это позволяет предотвратить увеличение угла тангажа и выход на закритические углы атаки.
    1. Как влияет температура на скорость на глиссаде


    https://studopedia.org/8-90779.html

    Истинная скорость на глиссаде увеличивается.
    1. Другие вопросы


    1. Формула подъемной силы. Только ли площадь крыла учитывается?

    2. Нарисовать график зависимости коэффициента подъёмной силы от угла атаки.

    3. То же с выпущенным закрылком, и с выпущенным предкрылком. В каком случае критический угол атаки больше?



    1   ...   25   26   27   28   29   30   31   32   ...   57


    написать администратору сайта