УЧЕБНИКгенетика. Генетика изучает процессы преемственности жизни на молекулярном, клеточном, организменном и популяционном уровнях
Скачать 6.93 Mb.
|
Глава 12 ГЕНОТИПИЧЕСКАЯ ИЗМЕНЧИВОСТЬ Генотипическая изменчивость — изменения, произошедшие в структуре генотипа и передаваемые по наследству. К этому типу изменчивости относят комбинативную и мутационную изменчивости, которые увеличивают внутривидовое разнообразие в природе. 12.1. Комбинативная изменчивость Комбинативная изменчивость возникла с появлением полового размножения, она связана с различными вариантами перекомбинации родительских задатков и является источником бесконечного разнообразия сочетаемых признаков. Дети, рожденные в разное время у одной родительской пары, похожи, но всегда отличаются рядом признаков. Комбинативная изменчивость обуславливается вероятностным участием гамет в оплодотворении, имеющих различные перекомбинации хромосом родителей. При этом минимальное число возможных сортов гамет у мужчин и женщин определяется как 223 (без учета кроссинговера). Большой вклад в комбинативную изменчивость вносит кроссинговер, приводящий к образованиюновых групп сцепления благодаря рекомбинации аллелей. При этом возможное число генотипов (g) 12.2. Мутационная изменчивость Мутационная изменчивость связана с процессом образования мутаций. Мутации — это внезапные скачкообразные стойкие изменения в структуре генотипа. Мутационная теория была создана Гуго де Фризом в 1901 — 1903 гг. Основные положения ее справедливы и по сей день: мутации — дискретные изменения наследственности, в природе спонтанны, мутации передаются по наследству, встречаются достаточно редко, могут быть вредными, полезными и нейтральными и т.д. 12.2.1. Классификации мутаций В зависимости от того, какой признак положен в основу, на сегодняшний день существует несколько систем классификации мутаций: 1. По способу возникновения различают спонтанные и индуцированные мутации. Спонтанные мутации происходят в природе крайне редко с частотой 1 — 100 на миллион экземпляров данного гена. В настоящее время очевидно, что спонтанный мутационный процесс зависит как от внутренних, так и от внешних факторов, которые называют мутационным давлением среды. Индуцированные мутации возникают при воздействии человека на объекты мутагенами — факторами, вызывающими мутации. Мутагены бывают трех категорий: физические (радиация, электромагнитное излучение, давление, температура и т.д.); химические (цитостатики, спирты, фенолы, циклические ароматические соединения, иприт); биологические (бактерии и вирусы). Организмы, у которых произошла мутация, называются мутантами. 2. По отношению к зачатковому пути — соматические и генеративные мутации. Генеративные мутации возникают в репродуктивных тканях и поэтому не всегда выявляются. Для того чтобы выявилась генеративная мутация, необходимо, чтобы мутантная гамета участвовала в оплодотворении, причем аллель другой гаметы не должен быть доминантен в случае, если мутация рецессивна. 3. По адаптивному значению выделяют положительные, отрицательные и нейтральные мутации. Эта классификация связана с оценкой жизнеспособности образовавшегося мутанта. 4. По изменению генотипа мутации бывают генные, хромосомные, геномные. 5. По локализации в клетке — ядерные и цитоплазматические. 12.2.2. Генные мутации Генные (точковые) мутации затрагивают, как правило, один или несколько нуклеотидов, при этом один нуклеотид (или нуклеотидная последовательность) может превратиться в другой, может выпасть, продублироваться, а группа нуклеотидов может развернуться на 180 градусов. Например, широко известен ген человека, ответственный за серповидно-клеточную анемию Не хватает стр 196-167 делеции — или нехватка, утрачен внутренний участок хромосомы, теломера не затронута(см. рис. 12.1); инверсии — повороты участка хромосомы на 180 градусов. Инвертированный участок может включать (перецентрическая инверсия) или не включать центромеру (парацентрическая инверсия). Межхромосомные перестройки — транслокации, при которых участок хромосомы перемещается (транслоцируется) на другое место негомологичной хромосомы, попадая при этом в другую группу сцепления. Выделяют несколько типов транслокаций: реципрокные — взаимный обмен участками негомологичных хромосом (рис. 12.2); нереципрокные (транспозиции) — участок хромосомы изменяет свое положение или включается в другую хромосому без взаимного обмена (рис. 12.2); дицентрические (полицентрические) — слияние . двух (или более) фрагментов негомологичных хромосом, несущих участки с центромерами (рис. 12.3); центрические (робертсоновские) — происходят при слияниии двух центромер негомологичных акроцентрических хромосом, с образованием одной мета- или субметацентрической хромосомы (рис. 12.4). Хромосомные мутации могут обладать стенотипическим проявлением. Наиболее известными примерами служат синдром «кошачьего крика» (плач ребенка напоминает мяуканье кошки, но это аномалия не только голосового аппарата, но и нарушение центральной нервной системы), синдактилия (сросшиеся пальцы) и т.д. Синдром «кошачьего крика» возникает при гетерозиготности (гомозиготные делении обычно летальны) по делеции в коротком плече пятой хромосомы (рис. 12.5). Обычно носители данной делеции погибают в младенчестве или в раннем детстве. Гетерозиготные делеции в других хромосомах человека — 4, 13, 18 также приводят к тяжелым соматическим и умственным расстройствам. Инверсии меняют последовательность сцепления генов. При перицентрических инверсиях может измениться и конфигурация хромосом, в случае, если инвертированный участок асимметричен относительно центромеры. Например, у человека 17 хромосома отличается от такой же хромосомы шимпанзе одной перицентрической инверсией, при этом у человека эта хромосома акроцентрична, тогда как у шимпанзе — метацентрик. На рис. 12.6 и 12.7 изображены генетические последствия кроссинговера парацентрической и перицентрической гетерозиготных инверсий. Видно, что из четырех хромосом, образовавшихся в процессе мейоза, в случае парацентрической инверсии у одной хромосомы отсутствует центромера, другая хромосома содержит две центромеры, две хромосомы остаются нормальными — их кроссинговер не затронул. В случае перицентри-ческой инверсии две хромосомы также остаются незатронутыми, в третьей — некоторые гены утрачены, а в четвертой — дуплицированы. Гетерозиготные по инверсиям организмы часто бывают стерильны, т.к. часть образующихся гамет не способна к образованию жизнеспособных зигот. Чаще хромосомные мутации приводят к патологическим нарушениям в организме, но рядом авторов была показана и ведущая роль хромосомных перестроек в процессе эволюции. Например, у человека 23 пары хромосом, а у крупных человекообразных обезьян — 24. Предполагают, что в процессе эволюции произошла, по крайней мере, одна робертсоновская перестройка (два плеча второй хромосомы человека соответствуют 12 и 13 хромосомам шимпанзе и 13 и 14 хромосомам гориллы и орангутанга), хромосомы 4, 5, 12 и 17 человека и шимпанзе отличаются перицентрическими инверсиями. Для обозначения хромосомных перестроек была разработана специальная номенклатура (табл. 12.1). Все символы перестроек помещают перед обозначением измененных хромосом, а перестроенные хромосомы заключают в скобки, например: 46, XX, del (Xq) — женский кариотип с 46 хромосомами и делецией длинного плеча Х-хромосомы; 46, ХУ, г (18) — мужской организм с 46 хромосомами и кольцевой восемнадцатой хромосомой; 45, XX, rob (15; 21) — женский кариотип с 45 хромосомами и робертсоновской транслокацией между 15 и 21 хромосомами; 46, ХУ, t (2; 5) (q21; q31) — транслокация произошла между сегментами 21 и 31 длинных плеч хромосом 2 и 5, соответственно. 12.2.4. Геномные мутации Геномные мутации связаны с нарушением числа хромосом в кариотипе и могут быть двух видов: полиплоидными и анеуплоидными. Полиплоидия — изменение хромосом в кариотипе, кратное гаплоидному набору (среди животных встречается крайне редко). Когда в некоторых клетках человека насчитывается по 69 хромосом, говорят о триплоидии, по 92 — о тетраплоидии. Триплоидия — одна из наиболее частых спонтанных аномалий набора хромосом в эмбриогенезе человека. Примерно 20% нарушений хромосом у зародышей приходится на триплоидию, однако у человека большинство триплоидных зародышей погибает в начале второго месяца внутриутробного развития. Доживают до 6-7 мес. эмбриогенеза около 1%. Синдром триплоидии (69, XXY) был впервые обнаружен у человека в 60-х годах. К настоящему времени опубликовано около 60 случаев триплоидии у детей, максимальная продолжительность жизни которых составляет 7 дней. Три- плоидия имеет не только многочисленные пороки развития: пороки головного мозга, сердца, желудочно-кишечного тракта и др.органов, но и приводит к утрате жизнеспособности. Тетраплоидия встречается крайне редко. Из всех зародышей с хромосомными нарушениями обнаруживается лишь 5—6%, сопровождающихся серьезными пороками развития, такие зародыши редко вступают в плодный период, погибая обычно в течение первых двух месяцев эмбриогенеза. В специальной литературе описано 5 случаев рождения детей с тетраплоидией, которые вскорости погибли. Эндомитоз — удвоение хромосом с последующим делением центромер, но без расхождения хромосом. У человека может наблюдаться в соматических тканях после воздействия мутагенов (рис. 12.8). Гетероплоидия, или анеуплоидия — изменение числа хромосом в кариотипе некратно гаплоидному набору. В результате гетероплоидии возникают особи с аномальным числом хромосом: моносомики (2п—1) и полисомики (трисомики, тетрасомики и т.д.), когда одна из хромосом может быть повторена трижды и более раз (2п + 1, 2...). Данные по частоте встречаемости геномных мутаций у человека приведены в табл. 12.2. Полные трисомии описаны у человека по большому числу хромосом: 8, 9, 13, 14, 18, 21, X и У. Однако среди аутосомных трисомии только трисомии по 21 и 22 хромосоме обладают жизнеспособностью, другие аутосомные трисомии приводят к гибели в первые дни после рождения. Полисомии по Х-хромосомам могут доходить до пяти с сохранением жизнеспособности индивида. В случае гетероплоидии особенно тяжелы моносомии. Считают, что около 20% случаев моносомий заканчиваются летально еще в первые дни эмбрионального развития или приводят к гибели зародыша на более поздних стадиях (спонтанные аборты). Причина происходящего в таких случаях лежит в утрате целой группы сцепления генов (хромосомы) в ка-риотипе. Встречаются моносомий и среди родившихся, например, синдром Шерешевского — Тернера, при котором 2п=45 (44,ХО) (рис. 12.9). Механизм возникновения геномных мутаций связан с патологией нарушения нормального расхождения хромосом в мейозе (анафаза-I и анафа> за-П), в результате чего образуются аномальные гаметы (по количеству хромосом), после оплодотворения которых возникают гетероплоидные зиготы (рис. 12.10). К таким заболеваниям относят синдром Дауна (трисомия по 21 хромосоме), синдром Клайнфельтера (47, ХХУ; 48, ХХХУ; 50, ХХХХХУ), при котором происходит нарушение развития и активности половых желез, наблюдается евнухоидизм (узкие плечи, оволосение и отложение жира по женскому типу, удлиненные конечности, рис. 12.11). Эти признаки в сочетании с некоторой психической отсталостью проявляются у относительно нормального мальчика, начиная с момента полового созревания. Изменения в фенотипе во время соматического развития, связанные с присутствием в организме генетически разнородных клеток, получили название мозаицизм. Он проявляется в виде секторов нового фенотипа, находящихся внутри ткани исходного фенотипа. Размеры секторов зависят от числа делений клеток, дающих начало секторам (рис. 12.12). Следовательно, размер зоны нового фенотипа определяется временем появления изменения в генотипе: чем раньше в развитии оно происходит, тем больше размер пятна в зрелой ткани. Клиническая классификация мозаиков по Х-хромосомным анеуплоидиям представлена в табл. 12.3. В ней описаны наиболее частые типы мозаицизма, однако обмены с участием Х-хромосомы не указаны. , Многие интерсексы (организмы с наличием признаков обоих полов) являются мозаиками, содержащими клетки с различным набором половых хромосом в разных комбинациях. Например, фенотип мозаика 45, ХХ/46, XX — может проявляться в виде овариального дисгенеза, гонадального дисгенеза, с мужским псевдогермафродитизмом или в форме «смешанного тонального дисгенеза», когда одна гонада представлена фиброзным тяжем, а другая диспластическим тестикулом. Некоторые истинные гермафродиты имеют кариотип 46, ХХ/46, ХУ. Такой мозаицизм может возникать как следствие различных механизмов, таких как оплодотворение ооцита двумя различными спермиями; слияние двух оплодотворенных яйцеклеток; митотическая ошибка во время первого дробления; или внутриутробный обмен стволовыми кроветворными клетками между разнополыми дизиготными близнецами. Цитоплазматические мутации — возникают в результате мутаций в плазмогенах, находящихся в ДНК-содержащих клеточных органоидах — митохондриях. Полагают, что некоторые патологии, приводящие к мужскому бесплодию, связаны с мутациями плазмогенов цитоплазмы. Считают, что и некоторые типы близнецовости могут быть обусловлены этими же причинами, при этом они наследуются, как правило, только по женской линии. 12.2.5. Спонтанные и индуцированные мутации Спонтанные (случайные) мутации — это мутации, возникающие при нормальных условиях жизни. Спонтанный процесс зависит от внутренних и внешних факторов (рис. 12.13). Спонтанные мутации у человека могут возникать в соматических и генеративных тканях. Метод учета спонтанных доминантных мутаций основан на том, что в редких случаях у одного из детей появится доминантный признак, отсутствующий у обоих родителей. Это должно свидетельствовать о возникновении спонтанной мутации. Проведенное в Дании изучение наследственности хондро-дистрофии показало, что примерно одна гамета из 24000 несет доминантную мутацию. Частоту возникновения в генеративных тканях человека спонтанных рецессивных мутаций рассчитал Холдейн. Он рассуждал следующим образом: женщина обладает двумя Х-хромосомами, если в одной из них произошла рецессивная мутация, приводящая к гемофилии, она будет ее скрывать от действия отбора. Мужчины, имея одну хромосому, при получении данной мутации заболевают и, как правило, не оставляют потомства. Однако число генов гемофилии в популяции не уменьшается. Отсюда следует, что частота вновь возникающих мутаций должна быть равна количеству мужчин, больных гемофилией. Расчеты показали, что эта величина равна от 1х10-5 до 5х10-5 за поколение. Для других наследственных заболеваний были найдены как более высокие, так и более низкие частоты мутирования (табл. 12.4). Курт Браун предложил, так называемый, прямой метод оценки спонтанных генных, хромосомных и геномных мутаций. Метод основан на изучении популяционной выборки новорожденных. При этом рекомендуется оценивать частоту мутаций только в тех случаях, когда признак или наследственная болезнь не обнаруживается у родственников пробанда. Частота мутаций рассчитывается по формуле: Число спонтанных случаев Проявления данной аномалии m = ------------------------------------------------------- 2 х число обследованных индивидов Хромосомные мутации выявляются у 1% новорожденных, при этом подразумевается, что у людей, не несущих хромосомной патологии, кариотип обладает высоким уровнем стабильности. Однако исследования показали, что нестабильность генома соматических клеток здоровых доноров не исключение, а норма. Повышенный уровень аберраций хромосом обусловлен генетически и выявлен у лиц с различными заболеваниями при некоторых формах анемии, заболеваниях нервной системы, изменениях иммунной системы и гормональных нарушениях. Большое число работ посвящено анализу спонтанного уровня аберраций хромосом в лимфоцитах периферической крови. Результаты этих работ показывают, что уровень аббераций хромосом в лимфоцитах у здоровых людей варьирует в пределах от 1 до 6%, при среднем значении в популяции 0,88%. По сведениям Бочкова Н.П. с соавторами (1975), при неоднократных исследованиях (до 8 раз в год) одних и тех же лиц отмечены колебания частот лимфоцитов с аберрациями хромосом от 0 до 6% независимо от времени года, пола, возраста и других особенностей индивидов. В связи с этим была высказана гипотеза о том, что нестабильность генома соматических клеток следует рассматривать не только как патологическое состояние организма, но и как адаптивную реакцию организма на измененные условия внутренней среды организма (Гуськов Е.П., 1989). Индуцированный мутагенез — искусственное получение мутаций с помощью мутагенов различной природы. Впервые способность ионизирующих излучений вызывать мутации (мутагенный эффект) была обнаружена Г.А.Надсоном и Г.С.Филипповым (1925). Два года спустя Г.Г.Меллер обосновал факт мутагенного эффекта рентгеновых лучей, используя методы количественного учета мутаций у дрозофилы. Затем в обширных исследованиях Н.В.Тимофеева-Ресовского, М.Демереца, К.Штерна, Дж. Ли, М.Дельбрюка и многих других на различных объектах были изучены основные радиобиологические зависимости индуцированных мутаций. В частности, было показано, что частота генных мутаций возрастает с увеличением дозы воздействия. В конце сороковых годов И.А.Рапопорт и Ш.Ауэрбах открыли существование мощных химических мутагенов. В последние годы показана возможность вызывать повреждение ДНК человека для целого ряда вирусов, различных паразитарных организмов, гельминтов и др. Все нарушения генетической информации человека, подрывающие здоровье населения, объединяются под названием генетический груз. В настоящее время основными проблемами являются оценка уровня генетического груза, снижающего здоровье людей. Влияние генетического груза на экономику, на трудовые и оборонные ресурсы страны очень велико. Просмотрим статистические данные домов инвалидов г. Москвы только по двум болезням: синдром Дауна, который возникает с частотой один больной на 600 новорожденных, и фенилкетонурия — рецессивная болезнь, которая появляется с частотой один на 10000 новорожденных. Статистический анализ показал, что за период с 1964 по 1979 гг. в эти дома поступило 75680 больных. Их содержание за это время обошлось государству в миллиард рублей (цены того периода) (Дубинин Н.П., 1990). : Как мутационные изменения, приводящие к нарушениям генетического аппарата, так и модификационные (изменения нормы реагирования генов) приводят к ухудшению здоровья человека. Наука разрабатывает методы коррекции таких нарушений. Создаваемые в последние годы детские реабилитационные центры позволяют претворять в жизнь достижения науки и корректировать целый ряд модификационных нарушений у детей и взрослых. 12.3. Дополнение. Антимутагены Мутационный процесс является источником изменений, приводящих к различным патологическим состояниям. Компенсационный принцип на современном этапе предполагает мероприятия по предотвращению генетических последствий загряз- нения среды: предотвращение или снижение вероятности возникновения мутаций и устранение возникших в ДНК изменений путем репарации наследственного аппарата методами генетической инженерии. В начале 50-х годов была обнаружена возможность замедления или ослабления темпов мутирования с помощью некоторых веществ. Такие вещества назвали антимутагенами, а сам процесс антимутагенезом. Выделено около 200 природных и синтетических соединений, обладающих антимутагенной активностью: некоторые аминокислоты (аргинин, гистидин, метионин и др.), витамины (токоферол, аскорбиновая кислота, ретинол, каротин и др.), провитамины и ферменты (пероксидаза, НАДФ-оксидаза, каталаза и др.), комплексные соединения (растительного и животного происхождения), фармакологические средства (интерферон, оксипиридины, соли селена и др.). Установлено, что антимутагены достаточно эффективны для человека. Наша пища является одним из поставщиков натуральных генотоксичных продуктов. Подсчитано, что с пищей человек получает несколько граммов в день веществ, способных вызвать генетические нарушения, что в десять тысяч раз больше остатков синтетических пестицидов, содержащихся в тех или иных продуктах. Такие количества мутагенов должны вызывать существенные поражения в наследственных структурах человека. Этого не происходит, так как наряду с мутагенами пища содержит также антимутагены, которые нейтрализуют эффект мутагенов. Соотношение тех и других веществ в различных продуктах питания неодинаково. Некоторые виды бобов, люпин, неочищенное хлопковое масло, черный перец, определенные виды съедобных грибов содержат больше мутагенов. Обнаружено, что потребление в пищу мяса животных, питавшихся растениями, поглотившими мутагенные вещества из окружающей среды, повышает мутационный уровень у человека. В 80-х годах был описан случай появления врожденных дефектов в одном хозяйстве у новорожденого ребенка, выводка щенят и козлят. Оказалось, что в период беременности женщина и собака употребляли молоко, полученное от домашних коз, которых кормили люпином. Генетический аппарат коз был непосредственно поражен генотоксическими компонентами люпина, а человека и собаки опосредованно, через компоненты молока. Соотношение антимутагенов и мутагенов в продуктах зависит от сроков их хранения и консервирования, а также от способа их приготовления. Например, повреждающие ДНК-продукты образуются в гренках, мясе, рыбе при их интенсивном нагревании, т.к. жир в процессе кулинарной обработки окисляется с образованием множества токсических продуктов (гидропероксиды холестерола, эпокизиды жирной кислоты, альдегиды и др.). Рационы традиционного питания, как правило, не отвечают демографическим (возрастная структура населения) и экологическим условиям. Защита наследственного аппарата от воздействия средовых токсинов предполагает увеличение в пользу антимутагенов баланса веществ в продуктах. Одна из наиболее изученных групп пищевых антимутагенов — витамины и провитамины: ретинол (витамин А и его синтетические аналоги — ретиноиды) и его провитамин каротин, токоферол (витамин Е), фолиевая кислота (витамин В4), аскорбиновая кислота (витамин С), филлохинон (витамин К). Антимутагенные свойства витамина Е (а-токофе-рола) впервые были описаны в 70-х годах. Установлено, что антимутагенное действие токоферола практически универсально для различных факторов физико-химической и биологической природы (Алекперов У.К.,1984). Токоферол содержится в растительных продуктах: маслах, семенах и проростках злаковых (облепихе, послене, семенах шиповника). Другой распространенный антимутаген — аскорбиновая кислота (витамин С). Для поддержания оптимального состояния здоровья ежедневная потребность в витамине С у разных людей варьируется в пределах от 250 мг до нескольких граммов. Аскорбиновая кислота активный антиканцероген. Пока роль витамина С в предотвращении рака не установлена до конца, тем не менее многочисленные экспериментальные и эпидемиологические данные об обратной корреляции между потреблением витамина С и появлением злокачественных образований имеют место. Отмечается высокое содержание аскорбиновой кислоты в зеленом и красном перце, черной смородине, петрушке, апельсиновом, лимонном, грейпфрутовом соках, помидорах, огурцах, клюкве, крыжовнике и др. Витамин В4 (фолиевая кислота) служит барьером для вирусов, провоцирующих раковые заболевания. Ежедневная доза витамина (около 800 мкг) значительно сокращает и даже прекращает развитие предраковых состояний у женщин, принимающих пероральные противозачаточные средства. Антимутагенами могут быть не только компоненты, но и пищевые продукты в целом. Экстракты крестоцветных растений, среди которых наиболее активны различные виды капусты, уменьшали уровень мутаций, вызываемых мутагенными компонентами пищи, более чем в 8—10 раз. Экспериментально определено, что токсический эффект снижается под действием экстракта яблок — в 8 раз, мятного листа — в 11 раз, зеленого перца — в 10, баклажана — в 7, винограда — в 4 раза. Рекордсменом оказался лопушник большой (сем. сложноцветных) — более чем в 20 раз. Среди лекарственных трав отмечают антимутагенное действие зверобоя. Правильное питание является одним из путей предотвращения действия генотоксических факторов среды. Экспертная группа Международной комиссии по защите окружающей среды от мутагенов и канцерогенов отмечает достоверное снижение риска у лиц, придерживающихся диеты, богатой хлебными злаками, овощами и фруктами при снижении потребления продуктов, богатых жирами, и алкоголя. 12.4. Задание 1. Участок гена, кодирующий полипептид, имеет в норме следующий порядок оснований: ААГ-ЦААЦЦАТТАГТААТГААГЦААЦЦЦ. Какие изменения произойдут в белке, если во время репликации в шестом кодоне появилась вставка (Т) между вторым и третьим нуклеотидами? 2. Какие изменения произойдут в строении белка, если на участке гена ТААЦАААГААЦАААА между 10 и И нуклеотидами включить гуанин, а между 13 и 14 цитозин, а в конце появляется аде-нин? Как называются произошедшие мутации? 3. Каково будет число хромосом в сперматозоидах человека, если нерасхождение одной из фигур наблюдается: а) в анафазе-I мейоза; б) в ана-фазе-П мейоза? 4. На участке гена, кодирующего полипептид, последовательность нуклеотидных оснований следующая: ГААЦГАТТЦГГЦЦАГ. Произошла инверсия на участке 2—7 нуклеотидов. Определите структуру полипептидной цепи в норме и после мутации. 5. В процессе гаметогенеза у женщины происходит элиминация одной фигуры деления. Определите количество хромосом, возможное в яйцеклетке, если элиминация происходит в метафазу-I и мета-фазу-П мейоза. 6. В нуклеотидной последовательности гена АААГТТАААЦТГАААГГЦ происходит выпадение 5-го и 9-го нуклеотидов. Какой должен быть участок белка в норме и какой получится? 7. Во время митоза (в анафазе) у человека не разошлась: а) одна пара хромосом; б) две. Сколько хромосом будет в дочерних клетках? 8. Определите возможные генотипы детей в браках: а) здоровая женщина и мужчина с синдромом Клайнфельтера; б) женщина-трисомик по X-хромосоме и мужчина с синдромом Дауна (47.+21). 9. Могут ли мужчина и женщина, больные синдромом Дауна, иметь здоровое потомство? Какова вероятность его проявления в случае, если оба родителя имеют трисомию, и в случае транслокационной формы наследования синдрома? 10. В культуре ткани человека произошла элиминация одной хромосомы, сколько хромосом будет в дочерних клетках, если элиминация происходит в разные фазы митоза? 11. Женщина получила от матери 2 хромосомы неправильной формы, а от отца — три, все остальные хромосомы нормальные. Какова вероятность, что все 5 хромосом неправильной формы окажутся в одной гамете: а) если они не гомологичны; б) если одна материнская и одна отцовская гомологичные; в) если две материнские и две отцовские образуют гомологичные пары хромосом? 12. При хроническом миелолейкозе в 21 хромосоме человека есть нехватка. Индивид, получивший эту хромосому, заболевает лейкозом. Какая вероятность рождения здоровых детей от этого индивида? 13. Какие из следующих заболеваний не связаны с нарушением мейотического расхождения хромосом: а) синдром Тернера; б) синдром Дауна; в) синдром «кошачьего крика»; г) синдром Патау? 14. Укажите число телец Барра в клетках организма с синдромами: Шерешевского — Тернера; Клайнфельтера (ХХУ; ХХХУ; ХУУ; ХХУУ; ХХХХУ); Патау, Эдварса. 15. На сегодняшний день описано и изучено большое число разных мозаиков по половым хромосомам у человека. Нарисуйте схему происхождения следующих мозаичных организмов: а) ХХ/ХО; б) ХХ/ХХУУ; в) ХО/ХХХ; г) ХО/ ХХ/ХХХ; д) ХХ/ХУ. 16. Определите названия мутаций в приведенных кариотипах, укажите, в каких хромосомах они произошли: а) 46, XX, 1 pter22; б) 46, XY, Xq28; в) 46, XY, t (13; 21); г) 46, XY, 8qinv 12/22. |