Методические указания к Типовому расчету. Методические указания к Типовому расчету ВАЖНАЯ ХУЙНЯ. ижевский государственный технический университет
Скачать 1.52 Mb.
|
Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения . Вариант 18 А). Сколько перестановок можно получить из букв слова ВОЛЫНКА? Б). Сколько перестановок будет заканчиваться на гласную букву для четных вариантов, на согласную букву – для не четных вариантов? А). Сколько перестановок можно получить из цифр числа 3857462642? Б). Сколько перестановок будет начинаться с четной цифры для четных вариантов, с нечетной цифры – для нечетных вариантов? Из букв слова ПРОЧЕРК составляются пятибуквенные слова. А).Сколько таких слов можно получить? Б) Сколько таких слов начинается с буквы П? В) А если слова содержат не менее 5 букв? Решить уравнение
В аудитории находятся 20 студентов. 12 из них изучают английский язык, а остальные 8 – французский. Случайным образом для уборки территории отбираются 5 студентов. Найти вероятность того, что среди них а) ровно 3 изучают английский язык; б) студентов изучающих французский больше. На отрезок АВ длиной 12 см наугад ставят точку М. Найдите вероятность того, что площадь квадрата, построенного на отрезке АМ, будет заключена между 36 см2 и 81 см2. Для сдачи экзамена студентам было необходимо подготовить 30 вопросов. Из 25 студентов 10 подготовили все вопросы,8 студентов подготовили по— 25 вопросов, 5 —по 20 вопросов и 2 — по15 вопросов. Вызванный студент ответил на поставленный вопрос. Найдите вероятность того, что этот студент: а) подготовил все вопросы; б) подготовил только половину вопросов. По каналу связи передается 8 сообщений. Каждое из них независимо от других с вероятностью 0,1 искажается помехами. Найти вероятности следующих событий: а) из 8 событий ровно 5 искажаются помехами; б) искажаются помехами не более половины всех передаваемых сообщений; в) помехами искажается более 6 сообщений. По данным ОТК в среднем 3% изделий требуют дополнительной регулировки. Вычислите вероятность того, что из 200 изделий 4 потребуют дополнительной регулировки. Вероятность выхода конденсатора из строя в течение времени t равна 0,3. Вычислите вероятность того, что за этот промежуток времени из имеющихся 150 конденсаторов выйдет из строя а) ровно 60 конденсаторов; б) от 40 до 80 конденсаторов. Дан ряд распределения случайной величины Х. а)Найти значение *; б) изобразить полигон распределения; в) найти и изобразить графически функцию распределения; г )найти вероятность того, что случайная величина Х примет значение в интервале [3,5; 7,5); д) Найти вероятность того, что случайная величина не попадет в интервал [3,5; 7,5); е) найти математическое ожидание случайной величины Х; ж) найти дисперсию случайной величины Х;
Даны законы распределения двух случайных величин Х и Y: Найти закон распределения случайных величин а )Z=X+Y; б)U=XY.
Случайная величина Х задана функцией плотности распределения Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения . Вариант 19 А). Сколько перестановок можно получить из букв слова ПРОБКА? Б). Сколько перестановок будет заканчиваться на гласную букву для четных вариантов, на согласную букву – для не четных вариантов? А). Сколько перестановок можно получить из цифр числа 4756473847? Б). Сколько перестановок будет начинаться с четной цифры для четных вариантов, с нечетной цифры – для нечетных вариантов? Из букв слова ПРАВИЛО составляются пятибуквенные слова. А).Сколько таких слов можно получить? Б) Сколько таких слов начинается с буквы П? В) А если слова содержат не менее 5 букв? Решить уравнение
В конкурсе мисс ИжГТУ участвовало 15 девушек. Среди них было 8 блондинок и 7 брюнеток. Первокурсник ИВТ факультета пригласил в кино их всех, но пришли только 5 девушек. Найти вероятность того, что первокурсник смотрел кино а) 5 блондинками ; б) двумя блондинками и тремя брюнетками. Внутрь круглого озера радиуса R вписан остров, формой которого является правильный треугольник. Найти вероятность того, что парашютист, выброшенный над озером, упадет в воду. Из 2 близнецов первым родился мальчик. Какова вероятность, что вторым родится девочка, если среди близнецов вероятность рождения 2 мальчиков и 2 девочек соответственно равна 0.6 и 0.4, а для разнополых близнецов вероятность родиться первым для обоих полов одинакова? Игральная кость подбрасывается 9 раз. Найти вероятность того, что а) шестерка выпадет 3 раза; б) шестерка выпадет более трех раз; в) шестерка выпадет не более семи раз. Среди семян ржи 0,4% семян сорняков. Какова вероятность при случайном отборе 500 семян обнаружить 5 семян сорняков? 19) При штамповке металлических клемм получается в среднем 90% годных. Найдите вероятность того, что среди 900 клемм окажется от 700 до 820 годных. Дан ряд распределения случайной величины Х. а)Найти значение *; б) изобразить полигон распределения; в) найти и изобразить графически функцию распределения; г )найти вероятность того, что случайная величина Х примет значение в интервале [3,5; 7,5); д) Найти вероятность того, что случайная величина не попадет в интервал [3,5; 7,5); е) найти математическое ожидание случайной величины Х; ж) найти дисперсию случайной величины Х;
Даны законы распределения двух случайных величин Х и Y: Найти закон распределения случайных величин а )Z=X+Y; б)U=XY.
Случайная величина Х задана функцией плотности распределения Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения . Вариант 20 А). Сколько перестановок можно получить из букв слова ПРИЮТ? Б). Сколько перестановок будет заканчиваться на гласную букву для четных вариантов, на согласную букву – для не четных вариантов? А). Сколько перестановок можно получить из цифр числа 2847563473? Б). Сколько перестановок будет начинаться с четной цифры для четных вариантов, с нечетной цифры – для нечетных вариантов? Из букв слова ПОХЛЕБКА составляются пятибуквенные слова. А).Сколько таких слов можно получить? Б) Сколько таких слов начинается с буквы П? В) А если слова содержат не менее 5 букв? Решить уравнение .
У одной одинокой бабушки было 13 кошек. Среди которых были 6 короткошерстных и 7 длинношерстных. На 8 марта одинокая бабушка решила подарить 6 кошечек соседям. Выбирала она их случайным образом. Найти вероятность того, что среди подарочков а) ровно 4 кошки были длинношерстные; б) длинношерстных кошек было не менее четырех. Королева Елизавета велела белошвейке вышить на ленте длины а две розы. Найти вероятность того, что расстояние между розами окажется меньше а/2. Число грузовых автомашин, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу легковых машин, проезжающих по шоссе, как 3 : 2. Вероятность того, что будет заправляться грузовая машина, равна 0,1; для легковой машины эта вероятность равна 0,2. К бензоколонке подъехала машина. Найти вероятность того, что это грузовая машина. Монету подбрасывают 9 раз. Какова вероятность того, что герб выпадет: а) три раза; б) не менее трех раз; в) более 6 раз. Устройство состоит из 1000 элементов, работавших независимо один от другого. Вероятность отказа каждого из них в течение времени t равна 0,0025. Найдите вероятность того, что за время t откажут ровно 3 элемента. Вероятность случайным образом отобранному изделию оказаться стандартным равна 0,8. Найдите вероятность того, что среди 300 взятых наугад изделий а) 180 окажутся стандартными; б) Стандартными окажутся от 155 до 200 изделий. Дан ряд распределения случайной величины Х. а)Найти значение *; б) изобразить полигон распределения; в) найти и изобразить графически функцию распределения; г )найти вероятность того, что случайная величина Х примет значение в интервале [3,5; 7,5); д) Найти вероятность того, что случайная величина не попадет в интервал [3,5; 7,5); е) найти математическое ожидание случайной величины Х; ж) найти дисперсию случайной величины Х;
Даны законы распределения двух случайных величин Х и Y: Найти закон распределения случайных величин а )Z=X+Y; б)U=XY.
Случайная величина Х задана функцией плотности распределения |