Главная страница

Методические указания к Типовому расчету. Методические указания к Типовому расчету ВАЖНАЯ ХУЙНЯ. ижевский государственный технический университет


Скачать 1.52 Mb.
Названиеижевский государственный технический университет
АнкорМетодические указания к Типовому расчету
Дата21.05.2021
Размер1.52 Mb.
Формат файлаdoc
Имя файлаМетодические указания к Типовому расчету ВАЖНАЯ ХУЙНЯ.doc
ТипМетодические указания
#208184
страница12 из 14
1   ...   6   7   8   9   10   11   12   13   14

Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения .


Вариант 24



  1. А). Сколько перестановок можно получить из букв слова МИНАРЕТ?
    Б). Сколько перестановок будет заканчиваться на гласную букву для четных вариантов, на согласную букву – для не четных вариантов?



  2. А). Сколько перестановок можно получить из цифр числа 4736275464?
    Б). Сколько перестановок будет начинаться с четной цифры для четных вариантов, с нечетной цифры – для нечетных вариантов?



  3. Из букв слова ПЛОМБИР составляются пятибуквенные слова.
    А).Сколько таких слов можно получить?
    Б) Сколько таких слов начинается с буквы П?
    В) А если слова содержат не менее 5 букв?



  4. Решить уравнение



    На рисунке приведена схема электрической цепи. События: ={элемент k работает}; С={ в цепи нет разрыва}. Выразить события и через события и .



  5. В студенческой группе 20 человек, из которых 6 девушек, а остальные – юноши. Деканат дал студентам этой группы 5 билетов на концерт группы «Тылобурдо». Найти вероятность, что а)только 2 билета достанутся девушкам; б) не менее трех билетов достанутся девушкам.

  6. На круге для метания дротиков нарисованы 4 концентрических окружности. Радиус внешнего круга равен 5r, а радиусы остальных кругов равны 4r,3r,2r и r соответственно.
    Внутренний круг и два кольца, ограниченные радиусами 2r и3r , а также 4r и 5r- закрашены. Определить вероятность попадания дротика в заштрихованную область.

  7. Имеется 10 монет, причем у одной из них герб с обеих сторон, а остальные монеты обычные. Наугад выбранную монету, не разглядывая, бросают 10 раз, причем при всех бросаниях она падает гербом кверху. Найдите вероятность того, что была вы­брана монета с 2 гербами.

  8. Рабочий обслуживает 12 однотипных станков. Вероятность, что станок потребует внимания рабочего в течение промежутка времени Т, равна 1/3. Найти вероятность того, что за время Т а) 2 станка потребуют внимания рабочего; б) менее 2-х станков потребуют внимания рабочего; в) хотя бы 2 станка потребуют внимания рабочего.




  1. Прядильщица обслуживает 1000 веретен. Вероятность обрыва нити на 1 веретене в течение 1 мин равна 0,003. Вычислите вероятность того, что в течение 1 мин произойдет не более двух обрывов




  1. Из большой партии продукции, содержащей 80% изделий первого сорта, наугад отбирают 200 изделий. Вычислите вероятность того, что среди отобранных будет а) ровно 80 изделий 1 сорта; б) не менее 50 и не более 90 изделий первого сорта.




  1. Дан ряд распределения случайной величины Х.
    а)Найти значение *;
    б) изобразить полигон распределения;
    в) найти и изобразить графически функцию распределения;
    г )найти вероятность того, что случайная величина Х примет значение в интервале
    [3,5; 7,5);
    д) Найти вероятность того, что случайная величина не попадет в интервал
    [3,5; 7,5);
    е) найти математическое ожидание случайной величины Х;
    ж) найти дисперсию случайной величины Х;



xi

1

3

5

6

pi

*

0,25

0,1

0,3




  1. Даны законы распределения двух случайных величин Х и Y:
    Найти закон распределения случайных величин а )Z=X+Y; б)U=XY.




xi

-3

0

1

2

pi

0,1

0,1

0,3

0,5




yi

-1

1

2

4

pi

0,1

0,2

0,1

0,6




  1. Случайная величина Х задана функцией плотности распределения



Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения .

Вариант 25



  1. А). Сколько перестановок можно получить из букв слова МОНЕТА?
    Б). Сколько перестановок будет заканчиваться на гласную букву для четных вариантов, на согласную букву – для не четных вариантов?



  2. А). Сколько перестановок можно получить из цифр числа 34765726374?
    Б). Сколько перестановок будет начинаться с четной цифры для четных вариантов, с нечетной цифры – для нечетных вариантов?



  3. Из букв слова ПЛОТНИК составляются пятибуквенные слова.
    А).Сколько таких слов можно получить?
    Б) Сколько таких слов начинается с буквы П?
    В) А если слова содержат не менее 5 букв?



  4. Решить уравнение



    На рисунке приведена схема электрической цепи. События: ={элемент k работает}; С={ в цепи нет разрыва}. Выразить события и через события и .



  5. У Малыша в кульке лежали 12 конфет: 5 карамелек и 7 шоколадных. Карлсон не глядя запустил в кулек руку и достал 7 конфет. Найти вероятность того, что у Карлсона в руке оказалось а) 4 шоколадных конфеты и 3 карамельки; б) шоколадных конфет оказалось не более 2.

  6. На круге для метания дротиков нарисованы 4 концентрических окружности. Радиус внешнего круга равен 5r, а радиусы остальных кругов равны 4r,3r,2r и r соответственно.
    Внутренний круг и два кольца, ограниченные радиусами 2r и3r , а также 4r и 5r- закрашены. Определить вероятность попадания дротика в незаштрихованную область.

  7. При переливании крови надо учитывать группу крови донора и больного. Человеку, имеющему четвертую группу крови, можно перелить кровь любой группы; человеку со второй или третьей группой крови можно перелить кровь либо той же группы, либо первой; человеку с первой группой крови можно перелить только кровь первой группы

  8. Китайский завод изготавливает изделия, каждое из которых с вероятностью 1/3 оказывается дефектным. Для контроля продукции выбирается 8 изделий. Найти вероятность того, что а) ни в одном изделии не будет дефекта; б) не менее чем в трех изделий будет обнаружен дефект; в) ровно в пяти изделиях будет дефект.




  1. В зрительном зале находится 500 человек. Какова вероятность того, что среди них имеется 3 левши, если левши в среднем составляют 1%?




  1. Вероятность выхода конденсатора из строя в течение времени t равна 0,3. Вычислите вероятность того, что за этот промежуток времени из имеющихся 150 конденсаторов выйдет из строя а) ровно 50 конденсаторов; б) от 40 до 80 конденсаторов.




  1. Дан ряд распределения случайной величины Х.
    а)Найти значение *;
    б) изобразить полигон распределения;
    в) найти и изобразить графически функцию распределения;
    г )найти вероятность того, что случайная величина Х примет значение в интервале
    [3,5; 7,5);
    д) Найти вероятность того, что случайная величина не попадет в интервал [3,5; 7,5);
    е) найти математическое ожидание случайной величины Х;
    ж) найти дисперсию случайной величины Х;



xi

2

4

6

7

pi

0,3

0,3

0,1

*




  1. Даны законы распределения двух случайных величин Х и Y:
    Найти закон распределения случайных величин а )Z=X+Y; б)U=XY.




xi

-1

0

2

4

pi

0,2

0,1

0,2

0,5




yi

-1

0

1

2

pi

0,2

0,2

0,5

0,1




  1. Случайная величина Х задана функцией плотности распределения




Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения .


Вариант 26



  1. А). Сколько перестановок можно получить из букв слова МЕГАФОН?
    Б). Сколько перестановок будет заканчиваться на гласную букву для четных вариантов, на согласную букву – для не четных вариантов?



  2. А). Сколько перестановок можно получить из цифр числа5867496847?
    Б). Сколько перестановок будет начинаться с четной цифры для четных вариантов, с нечетной цифры – для нечетных вариантов?



  3. Из букв слова ПИГМЕНТ составляются пятибуквенные слова.
    А).Сколько таких слов можно получить?
    Б) Сколько таких слов начинается с буквы П?
    В) А если слова содержат не менее 5 букв?



  4. Решить уравнение



На рисунке приведена схема электрической цепи. События: ={элемент k работает}; С={ в цепи нет разрыва}. Выразить события и через события и .






  1. Из 12 студентов 8 имеют спортивные разряды. Найти вероятность того, что среди выбранных наудачу 5 студентов спортивный разряд имеют а)3 человека; б) менее трех человек.

  2. Незнайка и Пончик договорились встретиться у фонтана между 10 и 11 часами утра. Каждый из них может прийти к фонтану в любой промежуток времени от 10 до 11 часами утра. Определить вероятность того, что время ожидания одним другого будет не больше 15 минут.

  3. Среди населения 33,7% имеют первую 37,5% —- вторую, 20,9%—третью и 7,9% — четвертую группу крови, а) Найдите вероятность того, что случайно взятому боль­ному можно перелить кровь случайно взятого донора, б) Найдите вероятность того, что переливание крови можно осуществить, если имеются 2 донора.

  4. Баскетболист делает 8 бросков мячом в корзину. Вероятность попадания мяча при каждом броске одинакова и равна 0,4. найти вероятность того, что а) баскетболист ровно 4 раза попадет мячом в корзину; б) попаданий в корзину будет менее пяти в) попаданий мячом будет не более 5.

  5. Завод отправил партию консервов в 2000 штук. Вероятность того, что консервная банка будет разгерметизирована, равна 0,0035. Какова вероятность того, что разгерметизировано будет не более 4 банок консервов?




  1. При штамповке металлических клемм получается в среднем 80% годных. Найдите вероятность того, что среди 900 клемм окажется а) 750 годных; б) от 700 до 820 годных.




  1. Дан ряд распределения случайной величины Х.
    а)Найти значение *;
    б) изобразить полигон распределения;
    в) найти и изобразить графически функцию распределения;
    г )найти вероятность того, что случайная величина Х примет значение в интервале
    [3,5; 7,5);
    д) Найти вероятность того, что случайная величина не попадет в интервал [3,5; 7,5);
    е) найти математическое ожидание случайной величины Х;
    ж) найти дисперсию случайной величины Х;



xi

0

3

6

7

pi

0,1

*

0,15

0,3




  1. Даны законы распределения двух случайных величин Х и Y:
    Найти закон распределения случайных величин а )Z=X+Y; б)U=XY.




xi

0

1

2

4

pi

0,1

0,1

0,3

0,5




yi

-2

0

2

4

pi

0,1

0,2

0,1

0,6




  1. Случайная величина Х задана функцией плотности распределения



1   ...   6   7   8   9   10   11   12   13   14


написать администратору сайта