Главная страница
Навигация по странице:

  • Номенклатура и изомерия.

  • Нахождение в природе и применение кислот

  • Ароматические монокарбоновые кислоты

  • Производные карбоновых кислот.

  • С ложные эфиры

  • Химические свойства .

  • Фумаровая кислота (НООС-СН=СН-СООН - транс

  • конспект лекций.Химия(органическая химия).dos. конспект лекций.Химия(органическая химия). Конспект лекций по дисциплине для студентов, обучающихся по специальностям и направлениям 050100. 62Естественнонаучное образование


    Скачать 1.49 Mb.
    НазваниеКонспект лекций по дисциплине для студентов, обучающихся по специальностям и направлениям 050100. 62Естественнонаучное образование
    Анкорконспект лекций.Химия(органическая химия).dos.doc
    Дата24.04.2017
    Размер1.49 Mb.
    Формат файлаdoc
    Имя файлаконспект лекций.Химия(органическая химия).doc
    ТипКонспект лекций
    #4059
    страница10 из 13
    1   ...   5   6   7   8   9   10   11   12   13

    Непредельные кислоты

    Непредельные кислоты - карбоновые кислоты, содержащие в углеводородном радикале кратные связи (двойные или тройные). Наибольшее значение имеют непредельные моно- и дикарбоновые кислоты с двойными связями.

    Номенклатура и изомерия.

    Названия для непредельных кислот составляют по номенклатуре ИЮПАК, однако чаще всего применяют тривиальные названия:

    СH2=CH-CОOH - 2-пропеновая или акриловая кислота

    CH3-CH=CH-CОOH - 2-бутеновая или кротоновая кислота

    СH2=C(СH3)-CОOH - 2-метилпропеновая или метакриловая кислота

    CH2=CH-CH2-CОOH - 3-бутеновая или винилуксусная кислота

    CH3-(СН2)7-CH=CH-(СН2 )7-CОOH - олеиновая кислота

    СН3 -(СН2)4 -CH=CH-СН2 -CH=CH-(СН2 )7-CОOH - линолевая кислота

    СН3-СН2-CH=CH-СН2-CH=CH-СН2-CH=CH-(СН2)7-CОOH- линоленовая кислота.

    Структурная изомерия непредельных кислот обусловлена изомерией углеродного скелета (например, кротоновая и метакриловая кислоты) и изомерией положения двойной связи (например, кротоновая и винилуксусная кислоты).

    Непредельным кислотам с двойной связью, так же как и этиленовым углеводородам, свойственна и геометрическая или цис-транс изомерия.

    Химические свойства. По химическим свойствам непредельные кислоты аналогичны моно- и дикарбоновым кислотам, но имеют ряд отличительных особенностей, обусловленных наличием в молекуле кратных связей и карбоксильной группы и их взаимным влиянием.

    Непредельные кислоты, особенно содержащие кратную связь в α-положении к карбоксильной группе, являются более сильными кислотами, чем предельные. Так, непредельная акриловая кислота (К=5,6*10-5) в четыре раза сильнее пропионовой кислоты (К=1,34*10-5).

    Непредельные кислоты вступают во все реакции по месту кратных связей, свойственные непредельным углеводородам.

    а) Электрофильной присоединение:

    1. галогенирование

    βCH2=αCH-COOH + Br2 → СH2 Br- CHBr-COOH

    пропеновая кислота α,β-дибромпропионовая к-та

    Это качественная реакция на непредельные кислоты, по количеству израсходованного галогена (брома или иода) можно определить количество кратных связей.

    2. гидрогалогенирование



    αCH2 δ+ = βCHδ-→COOH + Нδ+ - Brδ- → СH2 Br-CH2-COOH

    У α,β-непредельных кислот реакция присоединения протекает против правила Марковникова.

    б) Гидрирование

    В присутствии катализаторов (Pt, Ni) водород присоединяется по месту двойной связи и непредельные кислоты переходят в предельные:

    CH2=CH-COOH + Н2 → CH3-CH2-COOH

    акриловая кислота пропионовая кислота

    Процесс гидрирования (гидрогенизация) имеет большое практическое значение, особенно для превращения высших непредельных жирных кислот в предельные; на этом основано превращение жидких масел в твердые жиры.

    в) Окисление

    В условиях реакции Вагнера (см. «Алкены») непредельные кислоты окисляются до дигидроксикислот, при энергичном окислении - до карбоновых кислот.

    Нахождение в природе и применение кислот:

    а) акриловая CH2=CH-COOH и метакриловая CH2=C(СH3)-COOH кислоты - бесцветные жидкости с острыми запахами. Кислоты и их сложные (метиловые) эфиры легко полимеризуются, на этом основано их использование в промышленности полимерных материалов (органического стекла).

    Нитрил акриловой кислоты - акрилонитрил CH2=CH-C≡N применяют в производстве синтетического каучука и высокомолекулярной смолы полиакрилонитрила (ПАН), из которой получают синтетическое волокно нитрон (или орлон) - один из видов искусственной шерсти.

    б) высшие непредельные кислоты

    -цис-олеиновая кислота в виде эфира с глицерином входит в состав почти всех жиров животного и растительного происхождения, особенно высоко содержание олеиновой кислоты в оливковом («прованском») масле - до 80 % , калиевые и натриевые соли олеиновой кислоты являются мылами;

    -цис, цис-линолевая и цис, цис-линоленовая кислоты в виде эфира с глицерином входят в состав многих растительных масел, например в соевое, конопляное, льняное масло. Линолевая и линоленовая кислоты называются незаменимыми кислотами, поскольку не синтезируются в организме человека. Именно эти кислоты обладают наибольшей биологической активностью: они участвуют в переносе и обмене холестерина, синтезе простагландинов и других жизненно важных веществ, поддерживают структуру клеточных мембран, необходимы для работы зрительного аппарата и нервной системы, влияют на иммунитет. Отсутствие в пище этих кислот тормозит рост животных, угнетает их репродуктивную функцию, вызывает различные заболевания.

    Сложные эфиры кислот используют в производстве лаков и красок (высыхающие масла).
    Ароматические монокарбоновые кислоты

    Кислоты являются бесцветными кристаллическими веществами, некоторые из них имеют слабый приятный запах. Для них характерна сопряженная (π, π) система:



    Важнейшие представители:




    бензойная кислота



    фенилуксусная кислота
    транс-коричная кислота
    Ароматические кислоты являются более сильными кислотами, чем предельные кислоты (кроме муравьиной кислоты). Для кислот этого типа характерны все реакции насыщенных карбоновых кислот в карбоксильной группе и реакции электрофильного замещения в бензольном кольце (карбоксильная группа - заместитель 2 рода, м-ориентант).

    Нахождение в природе и применение кислот:

    Ароматические кислоты используют для получения красителей, душистых и лекарственных веществ; сложные эфиры кислот содержатся в эфирных маслах, смолах и бальзамах. Бензойная кислота и ее натриевая соль содержатся в плодах калины, рябины, бруснике, клюкве, придают им горьковатый вкус, обладают бактерицидными свойствами, широко используются в консервировании пищевых продуктов.

    Амид о-сульфобензойной кислоты называют сахарином , он слаще сахара в 400 раз.
    Производные карбоновых кислот.

    Общая формула производных карбоновых кислот:
    , где Х: - Hal, -ООС-R, -OR, -NH2.

    Для производных карбоновых кислот наиболее характерны реакции нуклеофильного замещения (SN). Поскольку продукты этих реакций содержат ацильную группу R-С=О, реакции называют ацилированием, а карбоновые кислоты и их производные - ацилирующими реагентами.

    В общем виде процесс ацилирования может быть представлен следующей схемой:


    По ацилирующей способности производные карбоновых кислот располагаются в следующий ряд:



    соли < амиды < сложные эфиры <ангидриды <галогенангидриды

    В этом ряду предыдущие члены могут быть получены из последующих ацилированием соответствующего нуклеофила (например, спирта, аммиака и т.д.). Все функциональные производные могут быть получены непосредственно из кислот и превращаются в них при гидролизе.

    Амиды, в отличии от других производных карбоновых кислот, образуют межмолекулярные водородные связи и являются твердыми веществами (амид муравьиной кислоты HCONH2 - жидкость).

    Сложные эфиры

    Методы получения. Основной способ получения сложных эфиров - реакции нуклеофильного замещения:

    а) реакция этерификации R-СООН + RО-Н ↔ R-СО-ОR + Н2 О

    Реакцию проводят в присутствии катализатора - минеральной кислоты. Реакции этерификации обратимы. Для смешения равновесия в сторону образования сложного эфира используют избыток одного из реагентов или удаление продуктов из сферы реакции.

    б) ацилирование спиртов галогенангидридами и ангидридами



    в) из солей карбоновых кислот и алкилгалогенидов

    R-COONa + RCl → RCOOR + NaCl
    Номенклатура. По номенклатуре ИЮПАК название сложных эфиров составляют следующим образом:

    СН3 -СН2 -СН2О-ОСН3

    углеводород радикал

    радикал+углеводород+оат - метилбутаноат.

    Если указывают тривиальные названия ацильных остатков , то название данного эфира - метилбутират. Эфиры можно называть по радикально-функциональной номенклатуре - метиловый эфир масляной кислоты.

    Физические свойства. Сложные эфиры представляют собой бесцветные жидкости, нерастворимые в воде и обладающие по сравнению с исходными кислотами и спиртами низкими температурами кипения и плавления, что обусловлено отсутствием в эфирах межмолекулярных водородных связей. Многие сложные эфиры обладают приятным запахом, часто запахом ягод или фруктов (фруктовые эссенции).

    Химические свойства. Для сложных эфиров наиболее характерны реакции нуклеофильного замещения (SN),протекающие в присутствии кислотного или основного катализатора. Важнейшими SN-реакциями являются гидролиз, аммонолиз и переэтерификация.

    Кислотный гидролиз сложных эфиров - реакция обратимая, щелочной гидролиз протекает необратимо.

    RCOOR + Н2О(Н+) ↔ RCOOН + ROH

    RCOOR + NaOH → RCOO- Na+ + ROH
    Жиры

    Жиры (триглицериды) - сложные эфиры, образованные глицерином и высшими предельными и непредельными кислотами.

    Из жиров выделено несколько десятков разнообразных предельных и непредельных кислот; почти все они содержат неразветвленные цепи углеродных атомов, число которых, как правило, четное и колеблется от 4 до 26. Однако именно высшие кислоты, преимущественно с 16 и 18 углеродными атомами - главная составная часть всех жиров. Из предельных высших жирных кислот наиболее важны пальмитиновая С15Н31СООН и стеариновая С17Н35СООН, из непредельных - олеиновая С17Н33СООН (с одной двойной связью), линолевая С17Н31СООН (с двумя двойными связями) и линоленовая С17Н29СООН (с тремя двойными связями). Непредельные кислоты, содержащие в радикале фрагмент (-СН2-СН=СН-), называются незаменимыми.

    Простые триглицериды содержат остатки одинаковых, смешанные - разных жирных кислот. Названия составляют на основе названий ацильных остатков, входящих в их состав жирных кислот:



    трипальмитин диолеостеарин

    Значение жиров исключительно велико. Прежде всего они - важнейшая составная часть пищи человека и животных наряду с углеводами и белковыми веществами. Наибольшей пищевой ценностью обладают растительные масла, которые наряду с незаменимыми жирными кислотами содержат необходимые для организма фосфолипиды, витамины, полезные фитостерины (предшественники витамина D). Суточная потребность взрослого человека в жирах 80-100г.

    Жиры практически не растворимы в воде, но хорошо растворимы в спирте, эфире и других органических растворителях. Температура плавления жиров зависит от того, какие кислоты входят в их состав. Жиры, содержащие преимущественно остатки предельных кислот (животные жиры - говяжье, баранье или свиное сало), имеют наиболее высокие Тпл. и представляют собой твердые или мазеобразные вещества. Жиры, содержащие преимущественно остатки непредельных кислот (растительные масла - подсолнечное, оливковое, льняное и т.д.), жидкости с более низкими температурами плавления.

    Химические свойства триглицеридов определяются наличием сложноэфирной связи и ненасыщенностью:

    а) гидрогенизация (гидрирование) жиров

    Присоединение водорода по месту двойных связей в остатках кислот ведут в присутствии катализатора - мелкораздробленного металлического никеля при 160-2400С и давлении до 3 атм. При этом жидкие жиры и масла превращаются в твердые насыщенные жиры - саломас, который широко применяют в производстве маргарина, мыла, глицерина.

    б) гидролиз жиров

    При щелочном гидролизе (омылении) жиров образуются соли жирных кислот (мыла) и глицерин, при кислотном - жирные кислоты и глицерин.

    в) присоединение и окисление

    Трилглицериды, содержащие остатки ненасыщенных жирных кислот, вступают в реакции присоединения по двойной связи (бромирование, иодирование) и окисления перманганатом калия. Обе реакции позволяют определить степень ненасыщенности жиров.

    Все жиры являются горючими веществами. При их горении выделяется большое количество тепла: 1г жира при горении дает 9300кал.

    Знаетели вы, что

    -В 1906году русским ученым С.А. Фокиным разработан, а в 1909г. им же осуществлен в промышленном масштабе метод гидрогенизации (отверждение) жиров.

    -Маргарин ( с греч. - «жемчуг») получен в 1869 году. Различные его сорта получают, смешивая саломас с молоком, а в некоторых случаях - с яичным желтком. Получается продукт, по внешнему виду напоминающий сливочное масло, приятный запах маргарина достигается введением в его состав специальных ароматизаторов – сложных композиций различных веществ, непременной составной частью которых является диацетил (бутандион) - жидкость желтого цвета, содержится в коровьем масле.

    -Однако встречаются и животные жиры, содержащие значительное количество непредельных кислот и представляющие собой жидкие вещества (ворвань, тресковый жир или рыбий жир).

    -Растительные жиры- масла добывают из семян и мякоти плодов различных растений. Они отличаются высоким содержанием олеиновой и других непредельных кислот и содержат лишь незначительное количество стеариновой и пальмитиновой кислот (подсолнечное, оливковое, хлопковое, льняное и др. масла). Лишь в некоторых растительных жирах преобладают предельные кислоты, и они являются твердыми веществами (кокосовое масло, масло какао и др.).

    -Сложные эфиры фруктовых эссенций обладают приятным запахом фруктов, цветов, например изоамилацетат - запахом груш, амилформиат - вишен, этилформиат - рома, изоамилбутират - ананасов и т.д. Их применяют в кондитерском производстве, при изготовлении безалкогольных напитков, в парфюмерии.

    -Из полиметилметакрилата готовят исключительно ценный синтетический материал - органическое стекло (плексиглас). Последнее превосходит силикатное стекло по прозрачности и по способности пропускать УФ-лучи. Его используют в машино- и приборостроении, при изготовлении различных бытовых и санитарных предметов, посуды, украшений, часовых стекол. Благодаря физиологической индифферентности полиметилметакрилат нашел применение для изготовления зубных протезов и т.п.

    -Винилацетат - эфир винилового спирта и уксусной кислоты. Его получают, например, при пропускании смеси паров уксусной кислоты и ацетилена над ацетатами кадмия и цинка при 180-220оС:

    СН3-СООН + СН≡СН → СН3-СО-О-СН=СН2

    Винилацетат – бесцветная жидкость, легко полимеризуется, образуя синтетический полимер - поливинилацетат (ПВА), применяется для изготовления лаков, клеев, искусственной кожи.
    Дикарбоновые кислоты

    Дикарбоновые кислоты содержат две карбоксильные группы. Наиболее известными являются кислоты линейного строения, содержащие от 2 до 6 атомов углерода:

    НООС-СООН - этандиовая (номенклатура ИЮПАК) или щавелевая кислота (тривиальная номенклатура)

    НООС-СН2 -СООН - пропандиовая или малоновая кислота

    НООС-СН2-СН2-СООН - бутандиовая или янтарная кислота

    НООС-СН2-СН2-СН2-СООН - пентандиовая или глутаровая кислота

    НООС-СН2-СН2-СН2-СООН - адипиноавя кислота

    Физические свойства.Двухосновные кислоты - кристаллические вещества с высокими температурами плавления, причем у кислот с четным числом атомов углерода она выше; низшие кислоты растворимы в воде.

    Химические свойства. По химическим свойствам двухосновные кислоты аналогичны монокарбоновым кислотам, но имеют ряд отличительных особенностей, обусловленных наличием в молекулах двух карбоксильных групп и их взаимным влиянием.

    Дикарбоновые кислоты более сильные кислоты, чем монокарбоновые кислоты с тем же числом атомов углерода: Кион. щавелевой кислоты (Н2С2О4) - 5,9 •10-2 , 6,4•10-5, уксусной кислоты - 1,76 •10-5 . По мере увеличения расстояния между карбоксильными группами кислотные свойства дикарбоновых кислот уменьшаются. Дикарбоновые кислоты могут образовывать два ряда солей - кислые, например НООС-СООNa и средние - NaООС-СООNa.

    Дикарбоновые кислоты имеют ряд специфических свойств, которые определяются наличием в молекуле двух карбоксильных групп. Например, отношение дикарбоновых кислот к нагреванию.

    Превращения дикарбоновых кислот при нагревании зависят от числа атомов углерода в их составе и определяются возможностью образования термодинамически стабильных пяти- и шестичленных циклов.

    При нагревании щавелевой и малоновой кислот происходит декарбоксилирование с образованием монокарбоновых кислот:

    НООС-СООН→ НСООН + СО2 и далее НСООН → СО + Н2 О

    НООС-СН2 -СООН → СН3-СООН + СО2

    Янтарная, глутаровая кислоты при нагревании легко отщепляют воду с образованием пяти- и шестичленных циклических ангидридов:




    Адипиновая кислота при нагревании декарбоксилирует с образованием циклического кетона - циклопентанона:




    Дикарбоновые кислоты взаимодействуют с диаминами и диолами с образованием соответственно полиамидов и полиэфиров, которые используются в производстве синтетических волокон.

    Наряду с насыщенными дикарбоновыми кислотами известны непредельные, ароматические дикарбоновые кислоты.

    Нахождение в природе и применение кислот:

    Щавелевая кислота широко распространена в растительном мире. В виде солей содержится в листьях щавеля, ревеня, кислицы. В организме человека образует труднорастворимые соли (оксалаты), например оксалат кальция, которые отлагаются в виде камней в почках и мочевом пузыре. Применяют как отбеливающее средство: удаление ржавчины, красок, лака, чернил; в органическом синтезе.

    Малоновая кислота (сложные эфиры и соли - малоноаты) содержится в некоторых растениях, например сахарной свекле. Широко используется в органическом синтезе для получения карбоновых кислот.

    Янтарная кислота (соли и сложные эфиры называются сукцинатами) участвует в обменных процессах, протекающих в организме. Является промежуточным соединением в цикле трикарбоновых кислот. В 1556 году немецким алхимиком Агриколой впервые выделена из продуктов сухой перегонки янтаря. Кислота и ее ангидрид широко используются в органическом синтезе.

    Фумаровая кислота (НООС-СН=СН-СООН - транс-бутендиовая кислота), в отличие от цис-малеиновой, широко распространена в природе, содержится во многих растениях, много - в грибах, участвует в процессе обмена веществ, в частности в цикле трикарбоновых кислот.
    1   ...   5   6   7   8   9   10   11   12   13


    написать администратору сайта