Конспект лекций Утверждено Редакционноиздательским советом университета в качестве учебного пособия Самара
Скачать 5.37 Mb.
|
5.4. Плоскопараллельное перемещениеКак известно, при вращении системы точек вокруг проецирующей оси одна из проекций плоской фигуры остается конгруэнтной самой себе. Поэтому проекцию, форма и размеры которой остаются неизменными, можно перемещать в новое, удобное для решения задачи положение. При этом не задается радиус вращения точки, а траектория ее движения произвольна. Этот способ преобразования КЧ называется плоскопараллельным перемещением. Рис. 5.10 Плоскопараллельное перемещение можно рассматривать как частный случай вращения вокруг проецирующих прямых, когда точки заданного объекта перемещаются во взаимно параллельных плоскостях, параллельных одной из плоскостей проекций, а положение осей вращения на КЧ не указывается. Рис. 5.11 Допустим, что плоскость общего положения, заданную пересекающимися прямыми m и n, необходимо перевести во фронтально-проецирующее положение. Для этого возьмем в плоскости горизонталь h и преобразуем ее во фронтально-проецирующую прямую. Горизонтальную проекцию горизонтали располагаем перпендикулярно оси х в любом месте КЧ. В процессе перемещение расстояния между горизонтальными проекциями точек, определяющих плоскость, остается неизменным. Лекция 86. ПОВЕРХНОСТИПоверхность – абстрактная фигура, не имеющая толщины. Она ограничивает какое-либо тело, состоящее из металла, пластмассы и т.д. Тело конечно, а поверхность может быть бесконечна. Например, шар ограничен сферой; боковой поверхностью конуса является коническая поверхность. 6.1. Способы задания поверхностиСуществует несколько способов задания поверхности, в том числе: кинематический, аналитический и графический. Внедрение в инженерную практику компьютерных технологий обусловило совместное использование графических и аналитических методов задания поверхностей. С точки зрения аналитической геометрии: Поверхность – непрерывное множество точек, координаты которых связаны в декартовой системе координат уравнением вида . Если – многочлен n-й степени, то поверхность называется алгебраической поверхностью n-го порядка. Если – трансцендентная функция, то и поверхность называется трансцендентной. В начертательной геометрии поверхность задается графически, а к ее образованию подходят с точки зрения кинематики: Поверхность – совокупность непрерывных последовательных положений линий, движущихся в пространстве по определенному закону. Эта движущаяся линия называется образующей, а линия, по которой она движется, – направляющей. Поверхность считается заданной, если по одной проекции точки, принадлежащей ей, можно построить вторую проекцию. Совокупность независимых условий, необходимых и достаточных для однозначного определения поверхности, называется определителем поверхности: , где – поверхность, (Г) – геометрическая часть определителя поверхности – совокупность геометрических фигур, образующих поверхность; [A] – алгоритмическая часть определителя поверхности – закон перемещения образующей. Рис. 6.1 Например, определитель конической поверхности имеет следующий вид: , где l – образующая; а – направляющая; S – точка пересечения образующих. Алгоритмическая часть определителя читается следующим образом: Любая образующая l пересекает направляющую а и проходит через точку S. На чертеже поверхность может быть задана: Набором элементов, определяющих эту поверхность. Очерком поверхности. Каркасом поверхности. Очерком поверхности называется проекции контура поверхности на плоскости проекций. Каркасный способ задания поверхности предполагает, что поверхность можно определить как двупараметрическое множество точек с одной стороны, а с другой – поверхность – однопараметрическое множество линий. Каркасом (точечным или линейным) называется множество точек или линий, определяющих поверхность. Каркасным способом задаются такие сложные поверхности с образующими переменного вида, которые нельзя описать математически. |