Главная страница
Навигация по странице:

  • Нейронная организация.

  • Физиология человека. Косицкий. Литература москва Медицина 1985 Для студентов медицинских институтов


    Скачать 7.39 Mb.
    НазваниеЛитература москва Медицина 1985 Для студентов медицинских институтов
    АнкорФизиология человека. Косицкий.doc
    Дата29.01.2017
    Размер7.39 Mb.
    Формат файлаdoc
    Имя файлаФизиология человека. Косицкий.doc
    ТипЛитература
    #964
    страница17 из 71
    1   ...   13   14   15   16   17   18   19   20   ...   71


    Нейронная организация. Ядро блокового нерва (IV пара), нейроны которого иннервируют верхнюю косую, мышцу глаза, расположено на уровне нижних бугров четверохолмия. Кпереди от него, на уровне верхних бугров четверохолмия, расположены нейроны, образующие ядро глазодвигательного нерва (III пара). Аксоны мотонейронов глазодвигательного нерва иннервируют верхнюю, нижнюю и внутреннюю: косую мышцы глаза, а также мышцу,, поднимающую веко. ,

    \ В составе глазодвигательного нерва проходят также эфферентные волокна преган- глионарных парасимпатических нейронов, которые иннервируют цилиарную мышцу и сфинктер зрачка:

    В нижнем двухолмии располагаются нейроны, получающие, сигналы ,по. слуховым путям, (первичный.слуховой центр) . В верхнем двухолмии располагаются клетки, на которых переключается импульсация, приходящая по зрительным путям (первичный зрительный центр).

    Из клеточных групп среднего мозга особенно выделяются красное ядро и черная субстанция. ,

    Красное ядро содержит нервные клетки разных размеров. От крупных нейронов начинаются наиболее толстые и быстропроводящие аксоны руброспииального тракта. ■

    Эти нейроны получают сигналы возбуждающего характера из моторной зоны-коры, из.промежуточного ядра мозжечка, а также из. нервных клеток черной субстанции.

    Красное ядро организовано соматотопически; клетки, аксоны которых иннервируют спинальныё центры, контролирующие мускулатуру верхних и нижних конечностей, начит на юте я из различных зон красного ядра.

    Важным образованием среднего мозга является черная субстанция — скопление нервных клеток, содержащих пигмент меланин, придающий этому ядру характерный темный цвет.' Ее нейроны получают многочисленные проекции от нервных клеток базальных ганглиев. В свою очередь они образуют синаптические связи с,нейронами ретикулярных ядер ствола мозга и базальных ганглиев.

    Функции ядер среднего мрзга

    В среднем мозге замыкается ряд рефлексов. Так, при. участии нейронов бугров четверохолмия осуществляются ориентировочные зрительные и слуховые рефлексы. У. животных они проявляются в повороте головы и тела по направлению к свету и звуку, настораживании ушей.

    Ядра четверохолмия участвуют в осуществлении сторожевого рефлекса, существенным компонентом которого является усиление тонуса сгибателей.

    Черная субстанция участвует в сложной координации движений./В ней сосредоточены содержащие дофамин нейроны, многие из которых посылают аксоны в передний мозг. Они принимают участие в регуляции эмоционального поведения. Другая часть дофами- нергических нейронов черной субстанции посылает аксоны к ядрам полосатого тела, где дофамин играет важную роль в контроле сложных двигательных актов. Повреждения черной субстанции, приводящие к дегенерации дофаминергических волокон, проецирующихся в полосатое тело, приводят к нарушению тонких движений пальцев рук, развитию мышечной ригидности и тремору (болезнь Паркинсона). , 1

    После перерезки ствола мозга ниже уровня красного ядра у животных наблюдается выраженное изменение тонуса мускулатуры туловища и конечностей — децеребрацион-

    пая ригидность, т. е. резкое повышение тонуса мышц-разгибателей. Конечности при этом сильно вытянуты, голова запрокинута назад, хвост приподнят (рис. 89).

    Развитие де^еребрационной ригидности связано с выключением импульсации, поступающей в спинной мозг по кортико-сииналь- ному и руброспинальному трактам, которые активируют в первую очередь .мотонейроны мышц-сгибателей. При этом начинает преобладать активность вестибулоспинальной системы, повышающей тонус преимущественно мотонейронов мышц-разгибателей. Рис. 89. Децеребрационная ригидность.

    МОЗЖЕЧОК

    Мозжечок представляет собой образование, расположенное позади больших полушарий мозга над продолговатым мозгом и мостом мозга. В эволюционном плане, он представляет собой очень древнюю структуру. Впервые мозжечок появляется у круглоротых и сохраняет принципиально "сходные функции во всем филогенетическом ряду позвоночных (от рыб до человека), будучи связан в первую очередь с моторной координацией. У млекопитающих и человека физиологическое значение мозжечка особенно возрастает, а его нейронная организация й структура.отдельных нервных элементов достигает наибольшей сложности.

    Анатомически в мозжечке можно выделить среднюю часть — червь, расположенные по обе стороны от него полушариям боковые флоккулонодулярные доли. Последние филогенетически представляют самую древнюю часть мозжечка

    архиоцеребеллум. Полушария мозжечка в свою очередь делятся на переднюю и заднюю доли. Передние доли полушарий и задняя часть червя мозжечка составляют старый мозжечок — палеоцеребеллум. Натнщ, филогенетически самая молодая часть мозжечка,, связанная двусторонними связями с наиболее новыми образованиями мозга — новой корой,— неоцеребеллум, включает переднюю часть задних долей полушарий мозжечка.

    В полушариях мозжечка выделяют верхнюю поверхность, образующую кору мозжечка и скопления нервных клеток - ядра мозжечка. Мозжечок связан с другими отделами ЦНС тремя парами ножек, образованных пучками нервных волокон.



    Нейронная организация. Нейронная организация мозжечка отличается исключительной упорядоченностью. Кора мозжечка построена по единому принципу и состоит из 3 слоев. В поверхностном, или молекулярном, слое находятся дендритные разветвления грушевидных клеток (клетки Пуркинье), представляющих собой одни из наиболее сложно устроенных нейронов мозга. Грушевидные клетки имеют чрезвычайно разветвленное дендритное дерево. Дендритные'отростки, в особенности в дистальных частях, обильно покрыты шипиками: Многочисленные разветвления дендритов резко увеличивают площадь поверхностной мембраны. Это создает условия для размещения огромного числа синапсов. Подсчитано, что один грушевидный нейрон имеет до 200 ООО синапсов. Кроме дендритов грушевидных клеток,, в поверхностном слое располагаются так называемые параллельные волокна, представляющие собой аксоны многочисленных вставочных нейронов.


    131
    В нижней части молекулярного слоя находятся тела корзинчатых клеток, аксоны которых образуют синаптические контакты с телами грушевидных клеток. В молекулярном слое также имеется некоторое число звездчатых клеток. Далее следует ганглиозный слой, в котором находятся тела грушевидных клеток. В следующем гранулярном слое коры мозжечка находятся тела вставочных нейронов (клеток-зерен, или гранулярных клеток) . Аксоны гранулярных клеток поднимаются Ъ молекулярный слой, где они Т-образно разветвляются. В гранулярном слое находятся также клетки Гольджи, аксоны которых направляются в молекулярный слой.

    ..J5 *



    Рис, 90. .Синаптические связи нейронов мозжечка [Экклс Дж., 1969].

    Схематически показаны возбуждающие синапсы, образуемые на .грушевидных нейронах (клетки Пуркинье) лазающими волокнами (ЛВ), аксонами клеток-зерен (КЗ), которые в свою очередь активируются мшистыми волокнами (МВ), й тормозные синапсы образованы аксонами звездчатых'(ЗвК) и корзинчатых клеток';1 Т — торможение; В — возбуждение. . ■ .; ■ ■ . : ■ .




    В кору мозжечка, поступают только два типа афферентных волокон: лазающие и мшистые (или моховидные). По этим каналам в мозжечок доставляются все сенсорные влияния. Лазающие волокна, являющиеся аксонами нейронов нижних олив, образуют синапсы'с основаниями дендритов грушевидных клеток. Каждое лазающее волокно контактирует обычно с одной грушевидной клеткой. Однако возбуждающее действие лазающего волокна столь эффективно, что грушевидная клетка отвечает на одиночный, импульс в лазающем волокне ритмическим разрядом потенциалов действия.

    В противоположность лазающим волокнам, моховидные волокна характеризуются значительной дивергенцией. Разветвление одного моховидного волокна образуют синапсы примерно на 20 вставочных нейронах, но не контактируют непосредственно с грушевидными клетками. Число вставочных нейронов примерно в 2300 раз превышает число клеток Пуркинье, аксоны их, разветвляясь в молекулярном слое, образуют систему параллельных волокон, оканчивающихсясинапеами.на более дистальных, покрытых многочисленными шипами дендритах грушевидных; клеток. Указанные'синапсы, как и синапсы, образуемые лазающими волокнами, являются возбуждающими. л

    Мшистые волокна, кроме того, образуют синапсы с корзинчатыми клетками. Аксоны корзинчатых клеток образуют густые сплетения типа корзинок вокруг тел грушевидных клеток, обеспечивающие значительную площадь синаптических контактов. Синапсы между аксонами корзинчатых клеток и телами грушевидных нейронов являются тормозными. Они обеспечивают эффективное торможение возбуждающих влияний, оказываемых на грушевидные клетки через аксрдендритные синапсы^ образуемые лазающими волокнами и аксонами вставочных нейронов.

    Наконец, мшистые волокна образуют синаптические контакты также с клетками Гольджи и звездчатыми клетками. Как и корзинчатые клетки, клетки Гольджи и звездчатые клетки являются тормозными нейронами. Однако аксоны клеток Гольджи заканчиваются не на грушевидных клетках, а на многих тысячах вставочных нейронов.

    Схема синаптической организации нейронов коры мозжечка показана на рис. 90.




    Рис. 91. Синаптические эффекты, вызываемые в поясничном мотонейроне обезьяны раздражением промежуточного ядра мозжечка (акрасного ядра (б) и обеих структур вместе (а+б). Верхняя кривая — нанесение раздражения, нижняя кривая—ответы мотонейрона.

    б



    п



    Если в кору мозжечка входит два типа афферентных волокон: лазающие й мшистые, то покидает ее всего лишь один тип эфферентных вОлокон, являющихся аксонами грушевидных нейронов (нейроны Пуркинье). Таким образом, грушевидные; клетки образуют единственный выход всей сложно организованной нейронной системы, составляющей кору мозжечка.'Другим отличительным свойством грушевидных клеток является то, что все они являются тормозными нейронами, т. е. образуют тормозящие синапсы со всеми клетками, с которыми они контактируют. Тормозные, постсинаптические потенциалы при активации грушевидных клеток возникают в нейронах собственных ядер мозжечка и в нейронах вестибулярных ядер. -

    ' В мозжечок поступает информация из: различных сенсорных систем. Афферентные сигналы достигают мозжечка по различным путям, которые можно подразделить на следующие группы: восходящие от спинного мозга (по спинно-мозжечковым трактам) , от вестибулярных рецепторов, от нижней оливы и от ретикулярной формации заднего мозга.

    Волокна дорсального и вентрального спинно-мозжечковых трактов доставляют в мозжечок информацию о состоянии мышечного аппарата.

    Спинно-ретикуломозжечковый тракт имеет переключение в латеральном ретикулярном ядре продолговатого-мозга. По этому пути в мозжечок поступает информация от кожи и более глубоких тканей. . : -;,.,

    Важный афферентный'вход кора мозжечка получает из нижней оливы, где происходит переключение импульсов, поступающих по нескольким путям, берущим начало, как-в спинном мозге, так и в структурах головного мозга. Значительную роль при этом играют сигналы, поступающие в его кору из больших, полушарий по мшистым и лазающим волокнам.

    Наконец, в кору флоккулонодулярной доли приходят первичные и вторичные вестибулярные афферентные влияния. - .

    Из красного ядра к мозжечку подходят коллатерали руброспинальных аксонов. Нейроны промежуточного; ядра мозжечка посылают волокна к клеткам красного ядра. Синапсы, образуемые этими волокнами на руброспинальных нейронах* являются возбуждающими и характеризуются высокой эффективностью. Поэтому раздражение промежуточного ядра мозжечка вызывает в спинальных мотонейронах ответы, сходные с теми, которые возникают при стимуляции красного ядра (рис. 91).

    Нейроны других мозжечковых ядер образуют возбуждающие синапсы на ретикуло- спинальных нейронах продолговатого мозга и моста. Итак, вся информация, приходящая в мозжечок, передается грушевидным клеткам или клеткам Пуркинье, а те в свою очередь оказывают тормозящее влияние на ядра мозжечка (а через них тормозят активность ретикуло- и руброспинальных нейронов) и на нейроны преддверного латерального ядра (ядро Дейтерса), дающие начало вестибулоспинальному тракту. Таким образом, мозоюечок может эффективно контролировать значительную часть команд, поступающих в спинной мозг по основным нисходящим трактам. Действительно, после удаления мозжечка ритмика вестибуло-, ретикуло- и руброспинальных нейронов, которая в норме изменяется в соответствии с выполнением определенной части двигательного акта, перестает зависеть от двигательных циклов.
    Функции мозжечка

    Несмотря на исключительную упорядоченность нейронной организации мозжечка, благодаря которой его сравнивают со своего рода нейронной машиной, его функциональная роль раскрыта, еще не полностью.

    Клинические проявления, развивающиеся при поражении мозжечка, а также эффек' ты, наблюдаемые при его раздражении или экстирпации, свидетельствуют о важной роли мозжечка в осуществлении статических, статокинетических рефлексов и других процессов управления двигательной активностью, автоматически регулирующих работу двигательного аппарата.

    Экспериментальные и клинические наблюдения показывают, что при поражениях мозжечка развиваются разнообразные нарушения двигательной активности и мышечного тонуса, а также вегетативные расстройства. Основные проявления расстройств двигательной системы включают нарушения равновесия и мышечного тонуса; тремор, атаксию и асинергию движений.

    Полное удаление мозжечка или егО'передней доли у животных приводит к повышению тонуса мышц-разгибателей, в то время как раздражение передней доли — к снижению этого тонуса (торможение децеребрационной ригидности).

    Через несколько суток после удаления мозжечка тонус разгибателей ослабляется, сменяясь гипотонией, лежащей в основе двигательных нарушений. В этот период животные с удаленным мозжечком не могут не только ходить, но и стоять и в то же время способны хорошо плавать.

    Многие клинические проявления, свидетельствующие о мозжечковой недостаточности, связаны с мышечной атонией и неспособностью поддерживать позу. После исследования коленного рефлекса или смещения пассивно висящей конечности нога не возвращается в исходное положение, а раскачивается подобно маятнику.

    Одно из наиболее характерных проявлений мозжечковой недостаточности — возникновение тремора. Тремор покоя характеризуется небольшой амплитудой, колебания протекают синхронно в разных сегментах тела. Для мозжечковых повреждений характерна также атаксия: нарушение величины, скорости и направления движений, что приводит к утрате плавности и стабильности двигательных реакций. Целенаправленные движения, например попытка взять предмет, выполняются порывисто, рывками, промахами мимо цели. Атаксический тремор наблюдается'при выполнении произвольных движений, будучи наиболее выражен в начале и в конце движения, а также при перемене его направления.

    Асинергия проявляется также нарушением взаимодействия между двигательными- центрами различных мышц. Так, у больных при выполнении движений не происходит одновременного сокращения мышц, компенсирующих смещение центра тяжести. Делая шаг, больной выносит ногу, не сгибая, впереди туловища, что приводит к падению. В результате асинергии сложные движения как бы распадаются на ряд выполняемых последовательно более .простых движений. ,

    Разновидностью асинергии можно считать характерный для поражения мозжечка симптом — адиадохокинез — нарушение правильного чередования противоположных движений, например сгибания и разгибания пальцев.

    Итак, расстройство равновесия и тонуса скелетной мускулатуры приводит к характерным нарушениям в осуществлении произвольных движений. Особенно сильно затрудняется выполнение задач, связанных с необходимостью точно коснуться какого-либо .предмета. Нарушение двигательной координации — астазия — характеризуемся появлением качательных и дрожательных движений. Нарушение локомоции — атаксия — проявляется расстройством походки, которая становится неровной, зигзагообразной.

    Наступает неадекватное перераспределение мышечного тонуса — дистония. Локальные повреждения небольших участков коры передней доли мозжечка позволили выявить локализацию в ней представительства различных участков скелетной мускулатуры. .

    Нарушение двигательной координации при поражениях мозжечка объясняется тесными связями его с основными структурами ствола мозга (дающими начало трактам, передающим импульсы в спинной мозг), а также с таламусом и сенсомоторной.областью коры больших полушарий. ;

    Одна из главных проекций мозжечка направлена к нейронам ретикулярной формации ствола, особенно к тем из ретикулоспинальных клеток, аксоны которых отличаются наиболее высокой скоростью проведения возбуждёния. Учитывая, что последние устанавливают контакты с а- и у-мотонейронами, можно заключить, что через ретикулоспиналь- ный путь обеспечивается срочная передача мозжечковых команд непосредственно к этим ключевым элементам спинального управления движениями.

    Ретикулоспинальные нейроны находятся под мозжечковым контролем, после устранения которого участие их в центральной регуляции движений резко нарушается. .

    Связи между мозжечком и преддверным латеральным ядром (ядро Дейтерса), дающим начало вестибулоспинальному тракту, настолько тесны и характерны, что это вестибулярное ядро функционально можно рассматривать как ядро мозжечка, вынесенное в продолговатый мозг. Значительная часть мозжечкового возбуждающего и тормозящего контроля спинальных центров обеспечивается с помощью вестибулоспинальных нейронов.

    Команды из промежуточной коры и промежуточного ядра мозжечка передаются к спинному мозгу через нейроны красного ядра. '

    ! ; Таким образом, нейронная организация мозжечка обеспечивает поступление в его кору разнообразной афферентной информации, в том числе от различных компонентов двигательного аппарата, сложную обработку этой информации в нейронах и синапсах мозжечка и. эффективную передачу корригирующих влияний к нейронам стволовых и спинальных центров моторного контроля.

    Как было показано Л. А. Орбели, мозжечок играет также важную роль в регуляции вегетативных функций за счет многочисленных синаптических связей с ретикулярной формацией ствола мозга!

    ПРОМЕЖУТОЧНЫЙ МОЗГ

    Промежуточный мозг образует стеной III желудочка. В процессе эмбриогенеза он формируется вместе с большими полушариями из переднего мозгового пузыря.

    Главными структурами промежуточного мозга являются шламу с, или зрительный бугор, и гипоталамус, или подбугровая область. Ядра таламуса расположены главным образом в Области боковой стенки III желудочка; ядра гипоталамуса образуют его нижнюю и нижнебоковую стенки. Верхняя часть III желудочка образована сводом и эпифизом (эпиталамус). v

    В глубине мозговой ткани промежуточного мозга расположены ядра наружных и внутренних коленчатых тел. Наружная граница промежуточного мозга проходит лате- ральнее коленчатых тел и образована белым веществом внутренней капсулы, отделяющей промежуточный мозг от подкорковых ядер конечного мозга.

    ТАЛАМУС
    1   ...   13   14   15   16   17   18   19   20   ...   71


    написать администратору сайта