Главная страница
Навигация по странице:

  • х у 1 2 3

  • Методические указания и индивидуальные задания для выполнения типового расчета Хабаровск Издательство двгупс 2007 удк 519. 2 (075. 8)


    Скачать 0.88 Mb.
    НазваниеМетодические указания и индивидуальные задания для выполнения типового расчета Хабаровск Издательство двгупс 2007 удк 519. 2 (075. 8)
    АнкорGamaley.doc
    Дата04.05.2017
    Размер0.88 Mb.
    Формат файлаdoc
    Имя файлаGamaley.doc
    ТипМетодические указания
    #6983
    страница7 из 33
    1   2   3   4   5   6   7   8   9   10   ...   33

    Вариант № 6


    1. В автомашине семь мест. Сколькими способами можно разместить семь человек в этой машине, если занять место водителя могут только трое из них?

    2. В лотерее 1000 билетов, из них на один билет выпадает выигрыш 500 рублей, на 10 билетов – по 100 рублей, на 50 – по 20 рублей, остальные билеты невыигрышные. Некто покупает один билет. Найти вероятность выигрыша не менее 50 рублей.

    3. Три стрелка стреляют в цель независимо друг от друга. Вероятности попадания в цель для первого стрелка равна 0,6, для второго – 0,7, для третьего 0,75. Найти вероятность по крайней мере одного попадания в цель, если каждый стрелок делает по одному выстрелу.

    4. У квадратного трехчлена х2+px+q коэффициенты p иqвыбраны наудачу из отрезка [0;3]. Какова вероятность того, что квадратный трехчлен имеет действительные корни?

    5. В группе спортсменов 20 лыжников, 6 велосипедистов, 4 бегуна. Вероятность выполнить квалификационную норму для лыжника – 0,9, для велосипедиста – 0,8, для бегуна – 0,75. Найти вероятность того, что взятый наудачу из этой группы спортсмен выполнит норму.

    6. Вероятность того, что расход электроэнергии за сутки не превысит нормы равна 0,75. Найти вероятность того, что из ближайших 6 суток только 4 суток пройдут без перерасхода энергии.

    7. Вероятность выигрыша в лотерее на один билет равна 0,3. Куплено 15 билетов. Найти наивероятнейшее число выигрышных билетов и соответствующую ему вероятность.

    8. Вероятность поражения мишени при одном выстреле равна р=0,6. Сколько нужно произвести выстрелов, чтобы с вероятностью 0,933 отклонение относительной частоты попадания от вероятности р по абсолютной величине не превзошло 0,04?

    9. Вероятность сбоя в работе телефонной станции при каждом вызове равна 0,007. Определить вероятность того, что среди 100 поступивших вызовов имеется 7 сбоев.

    10. В денежной лотерее выпущено 100 билетов. Разыгрывается один выигрыш в 50 рублей и десять – по 1 рублю. Найти закон распределения суммы возможного выигрыша для владельца одного билета и найти его средний выигрыш.

    11. Случайная величина Х задана своей плотностью распределения:



    Найти параметр С, функцию распределения случайной величины F(х), математическое ожидание, дисперсию, среднее квадратическое отклонение, вероятность попадания этой случайной величины в интервал (0,5;1). Построить графики функций f(x), F(x).

    1. Независимые случайные величины Х и У заданы следующими законами:



    Х

    -2

    1

    5

    7




    У

    -2

    1

    3

    Р

    0,2

    0,1

    0,5

    0,2




    Р

    0,3

    0,5

    0,2

    Составьте законы распределения случайных величин Х+У и Х-У и найдите их математическое ожидание и дисперсию.

    1. Используя неравенство Чебышева, оценить вероятность того, что случайная величина с дисперсией 0,001 отклонится от своего математического ожидания менее, чем на 0,2.

    2. Двумерная дискретная случайная величина (Х,У) задана таблицей. Найти ее ковариацию, коэффициент корреляции и сделать вывод о зависимости случайных величин Х и У.



    х у

    1

    2

    3

    0,3

    0,4

    0,01

    0,01

    2,25

    0,09

    0,2

    0,01

    4,1

    0,06

    0,08

    0,1

    6,5

    0,01

    0,02

    0,01


    1   2   3   4   5   6   7   8   9   10   ...   33


    написать администратору сайта