Главная страница
Навигация по странице:

  • ВВЕДЕНИЕ Предмет и задачи биохимии

  • Статическая биохимия

  • Биохимия животных

  • Фармацевтическая био

  • Сравнительная биохимия

  • Техническая биохимия

  • Основные признаки живой материи

  • 1. Высокий уровень структурной организации (упорядо­ченность).

  • 3. Обмен с окружающей средой и саморегуляция химиче­ских превращений.

  • 4. Самовоспроизведение, передача наследственной ин­формации.

  • Глава 1. ХИМИЧЕСКИЙ СОСТАВ ОРГАНИЗМОВ

  • Основы биологической химии предисловие


    Скачать 7.85 Mb.
    НазваниеОсновы биологической химии предисловие
    АнкорBiokhimia.doc
    Дата20.05.2017
    Размер7.85 Mb.
    Формат файлаdoc
    Имя файлаBiokhimia.doc
    ТипДокументы
    #8022
    страница1 из 15
      1   2   3   4   5   6   7   8   9   ...   15

    Основы биологической химии

    ПРЕДИСЛОВИЕ

    Знакомство с биологической химии имеет большое зна­чение, прежде всего, для формирования отчетливого понимания жизненных процессов.

    Современные достижения биохимии в раскрытии молекулярных механизмов живой природы позволяют понять физико-химические основы жизнедеятельно­сти, биоэнергети­ки, обмена веществ, саморегуляции биохимических процессов в организ­ме.

    Данное учебное пособие предназначено для подготовки студен­тов по направлению «Экология и природопользование», но может быть использовано также студентами других специаль­ностей при изучении курса общей биохимии, разделов органической химии посвященных биоорганическим соединениям. При написании данного учебного пособия автор исходил из того, что студенты, начинающие изучать биохимию, уже знакомы с вопросами общей и органической хи­мии. Поэтому из огромного материала выбраны основные темы и вопросы, позволяю­щие дать студенту общие представления о молекулярных основах жизни.

    Данное учебное пособие придерживается антропоцентрического принципа, все вопросы общей биохимии рассматриваются, прежде всего, в приложении к орга­низму человека, но в сравнении с другими живыми организмами всех уровней организации. Учебное пособие построено таким образом, что обеспечивает постепенность перехода от более простых вопросов стати­ческой биохимии к более сложным вопросам динамической биохимии, включающим иногда и некоторые аспекты биохимии функциональной. Поэтому в первой части пособия рассмотрены основные признаки и хи­мический состав живых организмов; даны современные представления о строении, свойствах и биологических функциях белков, углеводов, нук­леиновых кислот, липидов, ферментов, витаминов, коферментов, гормо­нов. Далее во второй части рассматриваются основные вопросы обмена веществ и энергии, биологического окисления; обмена углеводов, липи­дов, нуклеиновых кислот, белков и водно-солевого обмена, молекуляр­ные основы переноса информации, регуляции биохимиче­ских процессов, а также биохимические функции отдельных органов и тканей.

    Учебное пособие содержит таблицы и рисунки, а также боль­шое количество реакционных схем, структурных формул и химических названий, так как, не зная химического строения биоорганических ве­ществ и сущности их химических превращений, невозможно понять их биологическую роль и физиологическое значение при рассмотрении функциональной активности органов и тканей.
    ВВЕДЕНИЕ

    Предмет и задачи биохимии

    Биологическая химия - сравнительно молодая наука. Как само­стоятельная научная дисциплина она возникла в конце XIX века, когда в ряде университетов были созданы кафедры био­химии, написаны учебники по этому предмету, а курс биохимии стал не­пременной составной частью подготовки биологов и медиков, специалистов пищевой индустрии.

    Биологическая химия - наука о молекулярных основах жизни, изучающая химическую природу веществ, входящих в состав живых организмов, их превращения, а, также связь этих превращений с деятельностью органов и тканей, изменениями в окружающей среде.

    В зависимости от подхода к изучению живых организмов, биохимию делят на три крупных раздела:

    1. статическая биохимия;

    2. динамическая биохимия;

    3. функциональная биохимия.

    Статическая биохимия изучает качественный состав и количест­венное содержание соединений, входящих в состав биоло­гических объектов.

    Динамическая биохимия изучает всю совокупность превращений химических соединений и взаимосвязанных с ними превращений энергии в процессе жизнедеятельности организмов.

    Функциональная биохимия изучает связь между строением хи­мических соединений, их превращениями, с одной стороны, и функцией тканей или органов, содержащих эти вещества, - с другой стороны.

    Вышеназванные три раздела биохимии неразрывно связаны между собой, так как в живом организме состав и строение веществ неот­делимы от их преобразований, а также и от функций органов, в ко­торых эти вещества содержатся. Но в методологическом плане такое деление удобно, так как, с одной стороны, отражает историю развития биохимии, а с другой - позволяет постепенно, перейти при изучении кур­са от более простых вопросов к более сложным.

    В зависимости от объекта исследования биологическую химию делят на целый ряд направлений.

    Общая биохимия - рассматривает закономерности содержания и преобразования в процессе жизнедеятельности организмов химических соединений, общих для живой материи в целом. Несмотря на биохимиче­ское единство всего живого, в животных, растительных и микроорганиз­мах существуют и коренные различия, прежде всего в характере обмена веществ. Обмен веществ или метаболизм - совокупность всех химических реакций, протекающих в клетках организма (рис. Стр 117), направленная на сохранение и са­мовоспроизведение живых систем. Вышеизложенное объясняет сущест­вование помимо общей биохимии и некоторых других направлений био­логической химии.

    Биохимия животных - изучает состав животных организмов и превращение в них веществ и энергии.

    Биохимия растений - исследует состав растительных организмов и процессы метаболизма в них.

    Биохимия микроорганизмов - занимается составом и превраще­нием веществ в микроорганизмах.

    Медицинская биохимия (биохимия человека) - включает в себя все общебиохимические направления, но в той их части, которая имеет отношение к здоровью и болезням человека, то есть она изучает состав и превращения веществ в организме человека в норме и патологии.

    Фармацевтическая биохимия занимается разработкой новых ле­карственных препаратов; вопросами стандартизации и контроля качества лекарств, метаболизма их в организме.

    Сравнительная биохимия - сопоставляет состав и пути превра­щений веществ у организмов различных систематических групп, в том числе и в эволюционном аспекте.

    Техническая биохимия - исследует состав важнейших пищевых продуктов и изучает процессы, происходящие при их производстве и хранении.

    Таким образом, биохимия в целом изучает химические и физико-химические процессы, результатом которых являются развитие и функ­ционирование живых систем всех уровней организации. Главной задачей для биохимии является выяснение функционального (биологического) назначения всех химических веществ и физико-химических процессов в живом организме, а также механизма нарушения этих функций при раз­ных заболеваниях.

    Биохимия имеет огромное теоретическое и практическое значе­ние, особенно велико ее значение в биологии, так как управление жиз­недеятельностью любого организма (человека, животного, растения, микробов) невозможно без расшифровки в достаточной мере набора, строения и свойств химических соединений в его составе, а также без выяснения закономерностей их превращений в процессе жизнедеятель­ности организма.

    Кроме того, в биохимии, а именно биоорганической химии, исхо­дя из функций отдельных веществ в организме и механизма их действия разрабатываются принципы создания синтетических биоактивных соеди­нений, т.е. веществ, определенным образом изменяющих функции орга­низма. На базе известных микроорганиз­мов путем пересадки новых или модификации уже имеющихся генов соз­даются новые штаммы микроорганизмов, которые применяют для произ­водства дешевого кормового белка и незаменимых аминокислот. При этом в качестве питательной среды для таких микроорганизмов часто используют парафины нефти. Разработаны биологические спо­собы переработки промышленных и бытовых отходов, очистки морей от нефтепродуктов с помощью специально выведенных мутантов бактерий. Биологические катализаторы - ферменты применяются в фармацевтиче­ской промышленности для синтеза лекарств. Опять же с помощью мик­роорганизмов и методов генной инженерии созданы экономичные спосо­бы промышленного производства лекарственных препаратов - аминокис­лот, нуклеотидов, нуклеозидов, витаминов, антибиотиков и др. Разрабо­таны быстрые и специфичные методы анализа лекарств с использовани­ем ферментов в качестве аналитических реагентов.

    Таким образом, биохимия является фундаментом для решения важнейших вопросов производства продовольствия, медицины, экологии. Закономерности распада и синтеза химиче­ских соединений в природных условиях используются в про­мышленности и защите окружающей среды.

    Основные признаки живой материи

    Основными признаками, отличающими живой организм от нежи­вого, являются следующие: 1) высокий уровень структурной организации (упорядоченность); 2) способность к эффективному преобразованию и использованию энергии; 3) обмен с окружающей средой и саморегуляция химических превращений; 4) самовоспроизведение. Рассмотрим отдельно каждый признак.

    1. Высокий уровень структурной организации (упорядо­ченность). Если клетку разобрать на отдельные молекулы, а затем рас­положить их по степени сложности, получится своеобразная шкала уров­ней организации клетки (См. ниже рисунок иллюстрирующий иерархию живой материи).

    Переход от простых биомолекул к сложным биоструктурам осно­вывается на физико-химических принципах самоорганизации, в основе которой лежат химические взаимодействия между молекулами в составе живой материи. Ковалентные связи обеспечивают все многообразие про­стых биомолекул и макромолекул.

    Укладка макромолекул в пространстве и организация надмоле­кулярных структур, органоидов и клетки осуществляется с участием сла­бых связей (водородных и ван-дер-ваальсовых). Ковалентные связи обу­словливают прочность и устойчивость биомолекул, а слабые связи обес­печивают лабильность биоструктур. Более сложная организация объяс­няет явления живой природы и отличия живой материи от неживой.



    Рис. Иерархия структурной биохимической организации живой материи
    2. Способность к преобразованию и использованию энергии. Структурная организация (упорядоченность) живой природы связана с законами термодинамики. На первый взгляд, упорядоченность структуры живых организмов противоречит второму закону термодина­мики, согласно которому в изолированной системе спонтанные процессы происходят в направлении увеличения энтропии (беспорядка). Энтропия вселенной стремится к максимуму. Но под "вселенной" подразумевается система и ее окружение. Это важно подчеркнуть, так как энтропия системы может спонтанно уменьшаться до тех пор, пока окружающая среда может это скомпенсировать. Этим объясняется антиэнтропийность жи­вых организмов, являющихся открытыми системами (обмен с окружаю­щей средой веществом и энергией). Живые существа - очень упорядо­ченные структуры с низкой энтропией, однако они растут и поддержива­ют жизнь в силу того, что при их метаболизме генерируется избыток эн­тропии в окружающей среде.

    Для поддержания структурной упорядоченности живые организ­мы постоянно расходуют энергию. Подчиняясь первому закону термоди­намики, они потребляют энергию из окружающей среды, преобразуют ее в удобную для использования форму и возвращают эквивалентное коли­чество энергии в окружающую среду в форме теплоты. Обмениваясь с внешней средой энергией и веществом, клетка является открытой нерав­новесной системой. Если бы эти процессы пришли в состояние равнове­сия, то упорядоченность клетки не могла бы поддерживаться за счет ок­ружающей среды, и она бы погибла.

    3. Обмен с окружающей средой и саморегуляция химиче­ских превращений. Поступающие в клетку вещества используются как источник энергии и как строительный материал. Для построения нужных организму молекул поступающие извне вещества подвергаются хими­ческим превращениям. Продукты этих превращений, т.е. продукты обме­на, выводятся из организма во внешнюю среду. Биологические катализаторы белковой природы - ферменты - обеспечивают высокую скорость катализа, специфичность химических превращений и, самое главное, их саморегуляцию. Отсутствие в неживых объектах белков, в том числе и белков - ферментов, исключает у них возможность специфического об­мена веществ и саморегуляцию химических превращений.

    4. Самовоспроизведение, передача наследственной ин­формации. Самым уникальным признаком живых организмов, полно­стью отсутствующим в неживой природе, является способность к само­воспроизведению. Все многообразие живых существ определяется на­следственной программой, заложенной в нуклеиновых кислотах. Генети­ческая информация хранится в дезоксирибонуклеиновой кислоте (ДНК). Особенностью ее строения является потенциальная возможность самоко­пирования и, следовательно, передачи наследственных признаков от одного поколения организма к другому. Информация, заложенная в ДНК, реализуется через рибонуклеиновые кислоты (РНК) в структуре соответ­ствующего белка. При этом процесс передачи наследственной информа­ции не может происходить без белков. Очевидно, с образованием в ходе эволюции белков и нуклеиновых кислот сформировались первичные жи­вые организмы.

    Глава 1. ХИМИЧЕСКИЙ СОСТАВ ОРГАНИЗМОВ

    Общая масса всех живых организмов, населяющих Землю, со­ставляет примерно 1013-1015 т. В различных живых организмах обнару­жено более 70 химических элементов. Среди них выделяют две группы;

    - элементы, постоянно встречающиеся в составе любого opганизма (это С, Н, N, О, S, Р, К, Са, Mg, Fe, Zn, Си, Со),

    - иногда встречающиеся - это остальные элементы, их присутствие характерно лишь для некоторых групп организмов (наиболее распро­странены из них Мо, В, V, Na, I, Cl и ряд других).

    По количественному содержанию в биомассе все элементы делят на три категории:

    1 Макроэлементы, содержание которых превышает 0,001%. Примером таких элементов являются С, О, Н, N, Р, Са, Na, К, CI, S, Mg, Fe. Наиболее высоким содержанием отличаются О, С, Н, N, Na, Са.

    2. Микроэлементы, концентрация которых меньше 0,001%. На­пример, Мп, Zn, Со, Ni, I, F, Вг, Мо и др.

    3. Ультрамикроэлементы, содержание которых очень мало - 10-4 – 10-6 % и меньше. Установлено, что двенадцать из них необходимы для жизнедеятельности животных и растений, это В, Li, Al, Si, Sn, Cd, As, Sc, Ti, V, Cr, Ni. Предполагается, что еще шесть элементов (Be, Rb, Ва, Ag, Pb, W) также необходимы живым организмам. В живой природе встречаются в ничтожно малых количествах (10-6 – 10-12 %) также Cs, Gа, In, TI, Ge, Sb, Bi, Те, Au, Hg, La, Ce, Zr, Pr, Nb, инертные элементы и даже радиоак­тивные. Содержание последних менее одного атома на клетку. По-видимому, загрязнение внешней среды этими элементами приводит к накоплению их в организмах, особенно растительных.

    Почти 89% атомов организма человека и растений приходится на четыре элемента - О, Н, С и N, в то время как содержание трех по­следних в земной коре ничтожно.

    Прямой зависимости между распространением химических эле­ментов в живой и неживой природе нет. Тем не менее, установлено, что организм и среда взаимосвязаны, но их взаимозависимость носит тонкий характер. Так, например, выявлено, что те элементы, которые легко об­разуют растворимые и газообразные соединения, составляют основную массу биосферы (С, N, S, Р), хотя в земной коре их содержание невелико. Элементы, которые образуют плохо растворимые в воде соединения, широко распространены в неорганической природе, а в составе организ­мов встречаются в микроколичествах (Si, Fe, Al). Таким образом, доступ­ность элементов для биосферы играет, вероятно, решающую роль в их участии в построении живого вещества. Весь исходный материал для построения живых молекул поставляет неживая природа. Кстати, морская вода по содержанию элементов, за исключением углерода и фосфора, очень близка к внутренним средам живых организмов. Химический состав морской воды почти идентичен составу крови человека. Поэтому счита­ют, что возникновение жизни связано с водной средой Мирового океана.

    Все макро- и микроэлементы входят в состав живых организмов в виде химических соединений. Единственным исключением является кислород, незначительная доля которого растворена в жидкостях орга­низма в свободном молекулярном виде; однако большая часть молеку­лярного кислорода связана с гемоглобином, миоглобином и другими пе­реносчиками.

    Примерно 75% биомассы составляет вода, хотя ее содержание в различных организмах колеблется от 40 - 60%, например, у древесных растений, до 99% - у медузы. Вода играет огромную роль - она вместе с неорганическими соединениями образует среду, в которой протекают все физико-химические процессы в ходе обмена веществ. С другой стороны, часто вода - один из партнеров реакций, например, реакций гидролиза.

    На втором месте по количественному содержанию и на первом по значению находятся белки. В среднем в пересчете на сухое вещество в организмах содержится 45-50% белка, причем для растений свойствен­но отклонение от средней величины в сторону понижения, а для живот­ных - в сторону повышения. Некоторые микроорганизмы почти целиком состоят из белков. Белки, обладая рядом специфических свойств, явля­ются материальным субстратом жизни.

    Далее очень важным классом соединений, входящим в состав живых организмов, являются нуклеиновые кислоты. Они обеспечивают воспроизведение белковых тел, их содержание в сухом веществе орга­низмов стабильно и равно нескольким процентам, причем в раститель­ных клетках нуклеиновых кислот больше, чем в животных.

    Остальная часть сухого вещества организмов составлена из со­единений других классов. В основном это - углеводы (наибольшее со­держание в клетках растений, печени, мышц), липиды (ими богата жиро­вая ткань) и минеральные вещества. Содержание этих веществ в орга­низмах сильно варьируется, причем в растительном мире преобладают углеводы, а в животном - липиды. Минеральные вещества составляют примерно 10% от сухого вещества биомассы.

    Кроме белков, нуклеиновых кислот, углеводов, липидов и мине­ральных веществ в составе организмов найдены в незначительных коли­чествах представители других классов органических соединений: углево­дородов, спиртов, альдегидов, карбоновых кислот и их производных, аминокислот, эфиров, аминов, гетероциклов, мононуклеотидов. Часть соединений этой группы обладает мощным физиологическим действием и играет роль ускорителей или замедлителей жизненных процессов. По­этому, несмотря на различие в химической природе, эти вещества объе­диняют в одну группу под названием "биологически активные вещества". Сюда относят ферменты, витамины, гормоны, ростовые вещества, биостимуляторы, коферменты, антибиотики, фитонциды и др.
      1   2   3   4   5   6   7   8   9   ...   15


    написать администратору сайта