Т. Саати Принятие решений. Т. саати принятие решений метод анализа иерархий
Скачать 4.58 Mb.
|
Неопределенность в суждениях Неопределенность может быть выражена в следующем виде: 1) точечные оценки с функциями распределения вероятностей, 2) интервальные оценки без вероятностного распределения, 3) нечеткие оценки в виде нечетких чисел (определение последних, см., напри- мер, в [Д17, Д18]). В работе Варгаса [Д19] исследованы матрицы с элементами в виде случайных переменных. Показано, что при условиях полной согласованности, если суждения подчинены гамма-распределению, главный правый собственный вектор результи- рующей матрицы парных сравнений подчиняется распределению по Дирихле. Ут- верждается, что этот результат верен и для несогласованности менее 10%. Саати и Варгам в [Д20| исследовали интервальные оценки моделированием в предположении, что все точки интервала распределены равномерно. Используя тест Колмогорова–Смирнова, они показали, что компоненты собственного вектора удов- летворяют усеченному нормальному распределению. Была подтверждена возмож- ность распространения центральной предельной теоремы на распределение компо- нент собственного вектора как предельных средних значений доминирования каж- дой альтернативы над другими альтернативами по путям всех длин. Было показано, каким образом выбираются альтернативы в соответствии с произведением их при- оритетов и вероятностью того, что не произойдет перестановки рангов. Данный спо- 268 соб преодоления неопределенности в суждениях ЛПР позволяет измерять одновре- менно как важность, так и вероятность сохранение рангов. Применение МАИ при неопределенности, связанной с суждениями виде нечетких чисел, рассмотрено в [Д21, Д22]. Д.3. ПРИЛОЖЕНИЯ Как было отмечено, за последние годы МАИ широко использовался при решении различных задач. Но претендуя здесь на полноту, отошлем читателя к ранее упомя- нутым обзорным работам [Д6, Д7], а также к сборнику докладов Первого междуна- родного симпозиума по МАИ [Д5] и вышедшей в 1989 г. в книге [Д23|, и в данном обзоре остановимся на нескольких, наиболее интересных приложениях. С помощью МАИ были найдены коэффициенты целевой функции для задачи це- левого программирования большой размерности (9060 уравнений, 28730 перемен- ных и 6950 целевых ограничений) [Д24]. В работе представлено интересное сопос- тавление многомерной теории полезности с МАИ при решении многокритериальных задач. Показано, что трудности, возникающие у аналитиков при непосредственном определении требуемых функций полезности, сильно снижают привлекательность подхода, основанного на теории полезности. В то же время МАИ позволяет аналити- ку структурировать элементы проблемы довольно быстро и облегчает проведение анализа. Существенные ограничения МАИ, связанные с проведением многочислен- ных парных сравнений, преодолеваются при использовании предложенной в [Д15] процедуры, значительно снижающей количество необходимых парных сравнений. Э. Формен (один из авторов программной системы Expert Choice) предложил объ- единить МАИ с традиционными методологиями исследования операций [Д25]. В ра- боте обосновывается система поддержки принятия решений, которая понятна и ре- левантна для ЛПР в реальной жизни. Показано, как ЛПР могут разрабатывать, пони- мать и применять .модели для принятия управленческих решений, что на практике они редко делают. Рассматривается объединение МАИ с линейным программирова- нием, анализом очередей, методом критического пути, прогнозированием и цело- численным линейным программированием для решения ряда практических задач (дизайн новых видов продукции, распределение ресурсов во времени, по деньгам, труду и материалам с целью своевременного выполнения проекта). Новый подход к оценке риска для международных инвестиций, основанный на МАИ, был предложен в [Д26]. Подход позволяет исследовать факторы как количест- венно, так и качественно, обеспечивая основу для обсуждения и обмена идеями ме- жду ЛПР при анализе риска. В работе исследуются структуры, в пределах которых фирма может анализировать все важнейшие факторы, влияющие на ее бизнес за рубежом, и быстро принимать логические решения. Метод анализа иерархий успешно применялся при оценке эффективности лекар- ственных средств [Д27, Д28, Д29]. Методика обработки данных морфологического анализа позволила оценивать как действие отдельного препарата, так и сравнивать эффективность отдельных фармакологических средств при лечении ишемической болезни сердца. Полученные результаты хорошо согласуются с выводами клиниче- ских исследований. Заслуживает интереса возможность приложения МАИ в различных видах спорта, связанная с определением состава эстафетной команды [Д27]. Из заданного множе- ства кандидатов, относительно которых мы располагаем достаточно полной инфор- мацией, следует отобрать необходимое число и расставить их по этапам эстафеты (бег 4 × 100 м). В данном виде спорта оценка подготовки спортсмена производится согласно специальным методикам, выделяющим шесть специальных показателей. Часть этих показателей объективна (получается в результате абсолютных измере- 269 ний) и измеряется во времени. Есть и такие показатели, которые получаются в ре- зультате относительных измерений (например, психологическая подготовка). Кроме того, важность различных этапов также оценивается в результате относительных сравнений, проводимых экспертами (тренерами). Следует отметить возможность по- лучения неожиданных для ЛПР (тренера) решений, в данной задаче. Анализ, кото- рый может быть проведен для этого примера, наглядно иллюстрирует теоретические результаты, полученные в [Д11] для условий сохранения и перестановки рангов в случае абсолютных и относительных измерений. Метод анализа иерархий стал применяться и при построении экспертных систем. Для задач принятие решений классификационного типа в [Д30] описана основанная на фреймах экспертная система с элементами МАИ. Система проводит диагностику текущего состояния затвора плотины и предсказывает его срок службы, основыва- ясь как на структурных, так и на эмпирических точках зрения. Метод также приме- няется в качестве средства для снижения неопределенности информации в интегри- рованной системе поддержки приобретения знаний [Д31]. Д.4. ПРОГРАММНЫЕ РЕАЛИЗАЦИИ В настоящее время имеется несколько программных систем для мини- и микро- компьютеров, которые реализуют МАИ. Наиболее известная зарубежная система Expert Choice создана Т. Саати и Э. Форменом [Д32, ДЗЗ] Это – система поддержки принятия решений, предназна- ченная для использования на персональных компьютерах IBM PC типа XT, AT и их клонах. Она требует 256K памяти и один двухсторонний НГМД. Стоимость системы около 500 долларов. Система Expert Choice позволяет: – структурировать сложную проблему в виде иерархии в диалоговом режиме с редактированием; – воспринимать как количественные (абсолютные), так и качественные (относи- тельные) суждения при оценках; соответственно имеется возможность переключе- ния с вербальной шкалы на численную и обратно; – изменять суждения с целью достижения лучшего индекса согласованности для матриц парных сравнений, выявлять наиболее несогласованные суждения; – синтезировать приоритеты нижнего уровня; – анализировать чувствительность приоритетов; – использовать подход ранговой шкалы вместо проведения парных сравнений при большом числе альтернатив (до 100); – прервать работу и продолжить её с прерванного места. Отметим, что система нашла довольно широкое распространение в различных правительственных и частных организациях США. В 1988 г. X. Голям-Незад из Мурхедского государственного университета (штат Миннесота, США) предложил новую реализацию программной системы, воспроизво- дящей МАИ, под названием Decide. Это – система поддержки принятия решений, также предназначенная для использования на персональных компьютерах IBM PC типа XT, AT и их семействах. Основной особенностью системы является то, что в ней применяется непрерывная шкала при высказывании суждений, причём она меняется в диапазоне от нуля до пяти. В Японии компания Sumitomo Computing Service, Inc. модифицировала систему Expert Choice для японских персональных компьютеров NEC РС-9801 и IBM JAPAN-5550. Имеется также японская оригинальная версия программной системы, реализующей МАИ, которая разработана компанией .JUSF. Inc. под руководством К. Тоне для персональных компьютеров серии NEC РС-9801. 270 Программные реализации МАИ для персональных компьютеров разработаны также и в Китае (см., например, [Д34], где имеются соответствующие ссылки). В Советском Союзе основанная на МАИ система поддержки принятия решений, предназначенная для использования мини-ЭВМ СМ-4, разработана в 1985 г. [ДЗ5, Д36]. Система под названием «САЭМА», созданная на языке ФОРТРАН IV, позволяет сохранять несколько моделей иерархий, причем реализована парольная система доступа к модели. Предусмотрены средства редактирования соответствующей ие- рархии и прерывания работы с ней с возможностью ее возобновления во время дру- гих сеансов работы с ЭВМ, а также возможность анализа иерархий большого разме- ра. В настоящее время (1990 г.) в Институте вычислительной математики им. Н. И. Мусхелишвили АН Грузинской ССР разработана система поддержки приня- тия решений, предназначенная для пользования на персональных компьютерах IBM PC типа XT, AT и их семействах. Система под названием «ПРАИС» .(поддержка ре- шений анализом иерархических структур) построена в виде открытой системы и включает в себя ряд методов, которые могут быть в дальнейшем дополнены. Система позволяет решить проблему, для которой может быть построена иерар- хия в смысле МАИ с использованием различных подходов в зависимости от возмож- ностей экспертов или ЛПР. В случае, когда иерархия и соответствующие оценки вво- дятся в режиме диалога с компьютером, используется некоторый аналог системы САЭМА. Но предусмотрен такой случай, когда часть информации об иерархии имеет- ся в некотором наборе данных (подготовленном заранее или полученном из какой- либо информационной базы). Другими словами, для некоторой исходной иерархии часть информации существует в обработанном виде. Пользователь формирует «лич- ную» иерархию в виде некоторого поддерева исходной. При этом он может расши- рять исходную иерархию путем добавления вершин на отдельных уровнях. Таким образом, диалог каждый раз «подстраивается» на получение недостающей инфор- мации. В системе предусмотрена возможность работы при неполных сравнениях. В случае, когда эксперты не полностью заполняют матрицы парных сравнений по шкале 1–9, используется модификация МАИ согласно [Д15, Д16]. В системе ПРАИС предусмотрена также групповая экспертная процедура МАИ с применением элементов кластерного анализа. И, наконец, в случае, когда эксперты испытывают затруднения в оценках по шкале отношений, оценивая объекты по ди- хотомической шкале (больше–меньше, лучше–хуже и т. д.), и более того, в некото- рых случаях затрудняются вообще высказать какое-либо мнение при парных срав- нениях, в системе ПРАИС для анализа иерархий используется подход, основанный на групповой экспертной процедуре [Д37]. Для решения задачи стратегического планирования, описанной в гл. 6 (подроб- ное описание методологии дано в [Д38]), разработан пакет прикладных программ СТРАТЕГ. Система предусматривает два режима работы: 1) непосредственно опи- санный в [Д38] и 2) так называемый многопользовательский, который предусматри- вает заполнение матриц попарных сравнений иерархии и оценку переменных со- стояния для первой итерации прямого процесса как согласованного мнения всей группы экспертов, а в дальнейшем – работу каждого пользователя (эксперта) от- дельно на итерациях первого обратного и последующих прямых и обратных процес- сов. Затем информация, полученная от каждого эксперта, решающего задачу стра- тегического планирования, обобщается. Система проводит анализ отклонений в мнениях, а также их причины как для каждой матрицы попарных сравнений, так и по структуре иерархии, создаваемых каждым экспертом. Такая организации процес- са позволяет исследователям в полной мере учитывать мнения различных сторон, 271 при этом пакет прикладных программ СТРАТЕГ приобретает черты экспертной сис- темы. * Д.5. НЕКОТОРЫЕ ОБЩИЕ ОЦЕНКИ Попытаемся дать некоторую общую оценку МАИ как метода принятия решений. Принятие решений складывается в многодисциплинарную область исследований, в которой работают психологи, математики, экономисты, инженеры, программисты. Полностью присоединяясь к мнению С. В. Емельянова и О. И. Ларичева [Д39], отме- тим, что эта многодисциплинарность является как бы переходным этапом к появле- нию повой дисциплины, в рамках которой специалисты будут обладать необходи- мыми научными знаниями из приведенных выше дисциплин, а также новыми зна- ниями по проблемам, ранее не рассматривавшимся. Рассмотрим, насколько удовлетворяет МАИ ряду требований к научному обосно- ванию методов принятия решений, которые выдвигаются в результате накопления опыт я разработки этих методов. 1. В МАИ способы получения информации от эксперта соответствуют данным психологических исследований о возможностях человека переработать информа- цию. Действительно, аксиома гомогенности и принцип иерархической декомпозиции приводят в соответствие проблему получения оценок с психометрическими возмож- ностями человека. 2. В МАИ имеется возможность проверки экспертной информации на непротиво- речивость посредством индекса и отношения согласованности как для отдельных матриц, так и для всей иерархии. В некоторых программных средствах, реализую- щих МАИ (Expert Choice, ПРАИС), как было уже отмечено, также предусмотрена воз- можность проверки экспертной информации путём проверки порядковой транзитив- ности, а также выявления наиболее несогласованных суждений. 3. Любые соотношения между вариантами решений в МАИ объяснимы на основе информации, полученной от экспертов (четвертая аксиома МАИ [Д8]). Так, анализ приоритетов элементов решения по нисходящим уровням иерархии позволяет по- мять, как получено то или иное значение вариантов решения. 4. Математическая правомочность решающего правила в МАП прозрачна и бази- руется на методе собственного значения и принципа иерархической композиции, имеющих чёткое математическое обоснование. Таким образом, МАИ удовлетворяет четырём основным критериям, обеспечи- вающим согласно [Д39] всестороннюю научную обоснованность метода принятия решений. Наряду с научным обоснованием корректности МАИ отделенный интерес пред- ставляют границы (пределы) применимости метода. Выделяются пределы трех ти- пов: 1. По возможностям экспертов давать непротиворечивую информацию при уве- личении параметров проблемы. В МАИ оперируем гомогенными элементами в преде- лах одного уровня. Иерархическая декомпозиция, присущая методу, позволяет опе- рировать со значительным числом в общем случае негомогенных элементов. 2. По трудоемкости для экспертов в МАИ этот показатель напрямую зависит от числа уровней иерархии, числа элементов на каждом из уровней и от полноты ие- рархии. Подсчет трудоемкости для эксперта при применении МАИ легко может по- * Системы ПРАИС и СТРАТЕГ разработаны Р. Г. Вачнадзе, Н. И. Маркозаишвили, М. О. Карчава и Е. Н. Благидзе в ИВМ АН Груз. ССР. 272 зволить оценить в каждом конкретном случае целесообразность применения метода для рассматриваемой проблемы. 3. По вычислительной сложности алгоритмов МАИ выгодно отличается от многих методов принятия решений простотой вычислений и наличием надежных программ- ных средств. Д.6. ТЕМАТИКА ДАЛЬНЕЙШИХ ИССЛЕДОВАНИЙ Ниже перечислены наиболее интересные темы дальнейших исследований по МАИ (некоторые из этих тем предложены в [Д40, Д6]): 1. Углубление исследований по непрерывным суждениям (в отличие от дискрет- ной шкалы 1–9). В этом направлении известна лишь одна статья [Д41]. 2. Экспертные суждения в виде интервальных чисел. Представляется перспек- тивным применение методов интервального анализа [Д42] для разработки соответ- ствующих вычислительных процедур МАИ. В этом направлении некоторый путь на- мечает предложенная в [Д43] процедура, основанная на технике теории ошибок. 3. Оценка метода собственного вектора в ряду методов построения по заданной матрице парных сравнений объектов оптимального в том или ином смысле их ли- нейного упорядочения. Эта оценка может оказаться полезной при определении гра- ниц применимости как самого метода собственного вектора, так и МАИ в целом. 4. Проверка различных групповых методов экспертного оценивания на одних и тех же задачах и поиск общих элементов. Здесь имеется некоторый задел в виде теоретической работы [Д44], а также [Д45]. Заслуживает внимания применение методов кластерного анализа для выявления в группе экспертов однородных (или близких) оценок. 5. Разработка теоретических основ моделирования проблем принятия решений в виде иерархий, которых пока не существует, несмотря на широкое распространение иерархических структур. Возможно, развитие этого подхода будет исходить из об- ластей, в которых применяются иерархические структуры, например моделирование данных в базах данных. 6. Обобщение теоретических результатов, полученных для иерархий и сетевых систем, на многообразия [Д40]. 7. Дальнейшее исследование связи главного собственного вектора со степенным законом Вебера–Фехнера. Применение психологических исследований в части адек- ватного представления человеческих ощущений в числовых шкалах. 8. Исследование чувствительности приоритетов от числа критериев и в более общем случае от размеров и вида иерархии. 9. Исследование структур решения для зависимых от времени и динамических структур. Несмотря на важность этого аспекта для сложных реальных систем, имеющиеся результаты (см., например, [Д46]) все еще не дают практически прием- лемых методов. 10. Метод анализа иерархий и анализ риска: развитие теории использования сценариев при анализе риска. 11. Развитие приложений МАИ на теорию игр, в частности, для разрешения кон- фликтов. Здесь также имеется несколько работ (см., например, [Д47]), которые мог- ли бы стать отправной точкой в исследованиях. 12. Исследование связи МАИ с оптимизацией. В частности, можно ли с помощью МАИ решить общую задачу оптимизации [Д40]. 13. Связь МАИ с искусственным интеллектом и экспертными системами. Очевид- но, эта тема предоставит широкое поле деятельности для исследователей. |