Главная страница
Навигация по странице:

  • СЛИТКА • 23. РАЗЛИВКА СТАЛИ

  • 23.1. ОБОРУДОВАНИЕ ДЛЯ РАЗЛИВКИ В СЛИТКИ

  • 23.1.1. Выпускной желоб

  • 23.1.2. Сталеразливочный ковш

  • 23.1.3. Промежуточные разливочные устройства

  • Теория и технология производства стали 1. Учебник для вузов. М. Мир, ООО Издательство act


    Скачать 7.23 Mb.
    НазваниеУчебник для вузов. М. Мир, ООО Издательство act
    АнкорТеория и технология производства стали 1.doc
    Дата22.04.2017
    Размер7.23 Mb.
    Формат файлаdoc
    Имя файлаТеория и технология производства стали 1.doc
    ТипУчебник
    #5208
    страница56 из 88
    1   ...   52   53   54   55   56   57   58   59   ...   88
    Часть пятая
    РАЗЛИВКА СТАЛИ И КРИСТАЛЛИЗАЦИЯ СТАЛЬНОГО

    СЛИТКА


    23. РАЗЛИВКА СТАЛИ

    Выплавляемую в сталеплавильных аг­регатах сталь выпускают в сталеразли-вочные ковши и разливают. Часть выплавленной стали (2—3 %) исполь­зуют для получения стальных фасон­ных отливок (стальное литье); основ­ное ее количество поступает в разли­вочные отделения сталеплавильных цехов для получения слитков или не­прерывно-литых заготовок. Слитки стали затем отправляют в прокатные или кузнечные цехи для обработки давлением и получения из них балок, рельсов, труб, листа, различной фор­мы сортовых заготовок и др.

    Процесс наполнения жидким ме­таллом форм, в которых металл крис­таллизуется, образуя слитки или от­ливки, называют разливкой металла. Процесс, при котором металл, затвер­девая, образует фасонные отливки (детали), называют стальным литьем.

    23.1. ОБОРУДОВАНИЕ ДЛЯ РАЗЛИВКИ В СЛИТКИ
    Для разливки стали используют следу­ющее оборудование: 1) желоб, по ко­торому сталь из конвертера или пла­вильного агрегата (электро- или мар­теновских печей) попадает в ковш; 2) сталеразливочный ковш; 3) проме­жуточный ковш или промежуточное разливочное устройство; 4) изложни­цы; 5) поддоны; 6) установки непре­рывной разливки стали УНРС (маши­ны непрерывного литья заготовок МНЛЗ). Если сталь разливают в из­ложницы, то процесс разливки может осуществляться либо сверху (рис. 23.1), либо сифоном (рис. 23.2).

    23.1.1. Выпускной желоб состоит из металлического сварного или литого кожуха, футерованного, как правило, шамотным кирпичом. Желоб установ­лен с наклоном 0,10—0,12 к горизонта­ли (для обеспечения полноты стека-ния металла). На мартеновских печах садкой >300т плавку одновременно выпускают в два ковша (рис. 23.3). Та­кие печи называют двухжелобными.

    23.1.2. Сталеразливочный ковш вы­полняет несколько функций: 1) слу­жит емкостью для транспортировки металла от сталеплавильного агрегата или от сталевоза до места разливки; 2) является устройством, при помощи которого сталь распределяется по из­ложницам или кристаллизаторам уста­новки непрерывной разливки; 3) явля­ется агрегатом, в котором осуществля­ют ряд металлургических процессов (раскисление, легирование, обработку вакуумом, продувку инертным газом, обработку жидкими синтетическими шлаками или твердыми шлаковыми смесями и т. п.); 4) служит емкостью, в которой металл выдерживают при за­данной температуре в процессе раз­ливки плавки.

    К сталеразливочному ковшу предъявляют следующие требования. Ковш (без металла) должен быть воз­можно более легким, компактным и оборудован простыми и надежными устройствами, обеспечивающими вы­дачу металла необходимыми порция­ми и с требуемой интенсивностью. Футеровка ковша должна обеспечи­вать возможно более длительную его кампанию (от ремонта до ремонта). Конструкция и футеровка ковша дол­жны обеспечивать минимальные поте­ри тепла (минимальное охлаждение металла) в течение периода разливки. Кожух ковша сварной, форма ков­ша — усеченный конус со сферическим днищем. Отношение диаметра к высо­те - 1. Сечение ковша круглое, в неко-



    Рис. 23.1. Схема разлив­ки стали сверху:

    1 — сталеразливочный ковш;

    2 — изложница; 3 — поддон



    Рис. 23.2. Схема разливки стали сифоном:

    1 — центровая; 2— прибыльная надставка; 3 — из­ложница (для разливки спокойной стали); 4— под­дон; 5 — сифонный припас
    торых случаях слегка овальное (чтобы при том же размере траверсы разли­вочного крана использовать ковши большей вместимости). Объем ковша рассчитывают, исходя из объема всей массы металла и определенного (5-10 %) слоя шлака.

    Отечественная промышленность выпускает стандартные ковши вмес­тимостью от 50 до 480 т. Масса порож­него футерованного ковша вместимо­стью 300 т 72,5 т, масса порожнего 480-т ковша 136,3т. Разливочный ковш перемещается с помощью разли­вочного крана. Грузоподъемность применяемых разливочных кранов со­ставляет, т: 260-75/15; 350-75/15; 450-100/20; 630-90/16 (первые циф­ры — грузоподъемность главной те­лежки, цифры дроби — грузоподъем­ность вспомогательной тележки). Разливочный кран большой грузоподъем­ности — сложное и дорогостоящее со­оружение. Обычно емкость сталепла­вильного агрегата на действующих за­водах ограничивается грузоподъемно­стью разливочного крана. Ковши футеруют шамотом или высокоогнеу­порными материалами. Футеровку ковша выполняют либо из кирпичей, либо монолитной. Для изготовления монолитной футеровки требуется со­ответствующее оборудование, однако при этом заметно снижаются затраты труда. Существует несколько способов выполнения монолитной футеровки ковшей: литье (рис. 23.4), трамбова-



    Рис. 23.3. Схема двухручьевого универсаль­ного сталевыпускного желоба мартеновской печи:

    1 — сталеплавильный агрегат; 2—желоб; 3 — пере­городка для отделения печного шлака; 4— выем для слива шлака; 5 — механизм поворота желоба вокруг продольной оси; 6— шлаковая чаша; 7— сталераз­ливочный ковш

    1 л 1

    Рис. 23.4. Схема установки для изготовления монолитной футеровки 130-т сталеразливочных ковшей:

    1 — сталеразливочный ковш; 2 — поворотная платформа; 3 — шлаковый смеси­тель; 4—шнековый транспортер; 5—шнековый питатель; 6— бункер шлака; 7—бункер кварцита; 8— дозатор жидкого стекла; 9— бункер жидкого стекла; 10— мешалка для жидкого стекла; 11 — вентиль; 12— насос для жидкого стекла; 13 — ленточный дозатор для кварцита; 14— вентиль подачи жидкого стекла;

    15 — шаблон
    ние (в том числе автоматическое без шаблона), торкретирование, песко­метная набивка. Выбор способа футе­ровки ковша определяется наличием и стоимостью соответствующих обору­дования и материалов (об использова­нии тиксотропных материалов см. разд. 5.5).

    Стойкость футеровки ковшей, из­готовленных из обычных шамотных кирпичей, всего 15—25 плавок (нали­вов). Футеровка изнашивается нерав­номерно; наибольший износ наблюда­ется в месте падения струи металла и в районе шлакового пояса. В тех слу­чаях, когда металл в ковше подверга­ют различным методам обработки, включая методы, связанные с интен­сивным перемешиванием металла, стойкость шамотной футеровки резко снижается; тогда футеровку ковша вы­полняют из высокоогнеупорных мате­риалов, стойкость при этом возрастает до 100 и более плавок. В зависимости от качества огнеупорных материалов и технологии обработки стали в ковше расход огнеупоров колеблется в преде­лах от 2 до 5 кг/т стали.

    Для оптимизации срока службы футеровки определяют соответствую­щие зоны (рис. 23.5). Обожженные пе-риклазоуглеродистые огнеупоры ис­пользуют в верхнем шлаковом поясе. Таким образом обеспечивается шла-коустойчивость этого участка. Другим интересным аспектом такой конструк­ции ковша является применение пред­варительно литого глиноземошпи-нельного блока в зоне удара струи о днище ковша. Прочность материала может быть увеличена добавкой 2-3 % стального волокна. Использование для футеровки ковша в шлаковой зоне бетона из силиката циркония (ZrSi04) соответствует японскому подходу к изготовлению футеровки ковша полностью методом литья. Сочетание та­кого способа изготовления футеровки с осуществлением горячего ремонта приводит к снижению расхода огне­упорных материалов.

    В других странах в ковшах для вне-печной обработки стали применяют кирпичную футеровку, используя при этом следующие огнеупорные матери­алы: известково-периклазовые и пе-риклазовые огнеупоры на смоляной и пековой связках, а также высокогли­ноземистые и алюмосиликатные.

    Выбор того или иного вида огне­упоров может определяться также на­личием примесей в стали. Например, с учетом возможного загрязнения ме­талла углеродом (из огнеупорных ма­териалов), что нежелательно при выплавке стали с крайне низким со­держанием углерода, применяют не содержащие углерода огнеупорные материалы, такие, как обожженные известково-периклазовые огнеупоры.

    Оборудование для выпуска стали из ковша состоит из стопорного уст­ройства и разливочного стакана. Обычно в каждом ковше устанавли­вают один комплект такого оборудо­вания, однако в ковшах большой вме­стимости для ускорения разливки монтируют два таких комплекта. Раз­ливочный стакан устанавливают в



    Рис. 23.5. Типичная бетонная футеровка ков­ша для внепечной обработки стали в Японии:

    1 — сторона слива шлака; 2 — противоположная сторона; 3— шлаковый пояс; 4 — изоляционный кирпич; 5—литой блок; 6— глиноземошпинельный бетон; 7—периклазоуглеродистый кирпич; 8— вы­сокоглиноземистый кирпич
    гнездо, предусмотренное в днище ков­ша (в самой низкой его точке, с тем чтобы в стакан сливался из ковша весь металл, без остатка). После разливки каждой плавки стакан заменяют но­вым. Различают два типа стопорных устройств:

    1. Вертикальные стопорные уст­ройства (или просто стопоры). Уст­ройство включает вертикальный сто­пор, проходящий внутри ковша через массу металла (рис. 23.6). При помо­щи механизма рычажного типа стопор поднимается и опускается. При подъеме нижний конец стопора (пробка стопора) отходит от разливоч­ного стакана и через открывшееся от­верстие металл из ковша выливается в изложницу. Стопор состоит из сплош­ного или полого металлического стер­жня, на который надета серия кату­шек из огнеупорного материала (обычно из шамота).

    2. Стопорные устройства скользя­щего типа. Устройство крепится к ко­жуху ковша снизу снаружи. Отверстие разливочного стакана перекрывается (и открывается) горизонтальным отсе­кающим движением скользящей ог­неупорной плиты. В зависимости от вида движения отсекателя (прямоли­нейного или вращательного) скользя­щие затворы делят на шиберные (рис. 23.7, б) и поворотные или диско­вые (рис. 23.7, в) с несколькими отвер­стиями разного диаметра. Дисковые затворы позволяют изменять по ходу разливки скорость истечения металла из ковша или сохранять ее в процессе опорожнения ковша (по мере опуска­ния уровня металла в ковше вести раз­ливку через отверстия все большего диаметра). При расположении за­творного устройства вне ковша все необходимые операции с находящим­ся в ковше металлом (перемешивание и т.д.) проводятся без опасения по­вредить стопор и вызвать этим ава­рийный выход металла из ковша. На­дежность скользящего затвора зависит от огнеупорности и износостойкости скользящих плит, от точности их изго­товления и притирки.

    В процессе разливки сечение раз­ливочного стакана изменяется. Опас­ным считается случай так называемого зарастания стакана. Такое явление



    Рис. 23.6. Сталеразливочный свар­ной ковш емкостью 480т со сто­порным устройством:

    /—сливной носок; 2 —цапфа; 3 — пли­та; 4—упор; 5—пояс жесткости; 6— стопор; 7—корпус; Sогнеупорный кирпич; 9— скоба; 10, 12— вилки; 11 — ползун; 13 — направляющая труба; 14— винтовой механизм; 15— гидравличес­кий цилиндр; 16— пружина; 17— руч­ной рычажный механизм; 18— шамот­ная пробка; 19— сталевыпускной стакан


    наблюдается, в частности, при раз­ливке стали, раскисленной алюмини­ем. Образующиеся при раскислении частицы корунда А12О3 оседают на внутренних стенках стакана, образуя тугоплавкую и прочную настыль; внутренний диаметр стакана начина­ет уменьшаться, и, если не принять необходимых мер, разливка может вообще прекратиться. Для предотвра­щения таких явлений, а также во из­бежание застывания металла (особен­но первых его порций) в полости ста­кана за время от выпуска плавки до начала разливки в разливочный ста­кан подают (с небольшой интенсив­ностью) инертный газ.

    Падение струи стали из ковша в из­ложницу или кристаллизатор сопро­вождается рядом явлений, отрица­тельно влияющих на качество металла.

    Большой напор металла, вытекающего из крупного ковша, вызывает интен­сивное разбрызгивание струи при уда­ре о дно изложницы или о поверх­ность жидкого металла. Расчеты и ре­зультаты моделирования показывают, что при разливке из ковшей большой вместимости критерий Рейнольдса для струи может достигать значений >106, что свидетельствует о высокой степени турбулентности струи. Исте­чение таких турбулентных потоков со­провождается захватом атмосферного воздуха, а также развитием кавитаци-онных явлений, что, в свою очередь, приводит к резким местным колеба­ниям давления металла в слитке. При большом напоре металла струя пере­стает быть непрерывной, что приво­дит к эжектированию окружающего воздуха, интенсивному развитию вторичного окисления стали, увеличению содержания азота и т. д.



    Рис. 23.7. Скользящий затвор:

    а — принцип действия (слева — входной 1 и выпускной 2 стаканы совмещены во время разливки; справа — выпускной стакан и скользящая плита перемещены в положение «закрыто»); б—шиберного типа (1 — раз­ливочный стакан ковша; 2— плиты; 3 — гнездовой кирпич; 4— наружный разливочный стакан; 5 —метал­лический защитный кожух); в — вращающийся (6— верхний стакан; 7—неподвижная плита; 8— вращаю­щаяся плита; 9— коллектор; 10— ротор; 11 — пружины; 12 — редуктор; 13 — электродвигатель; 14— пре­дохранительный кожух; 75— футеровка промежуточного ковша)
    Диаметры разливочных стаканов могут колебаться от 50 до 120 мм. При истечении металла через отверстие в днище ковша создается положение, при котором основное перемещение жидкого металла происходит по оси стакана, т. е. в первую очередь из ков­ша удаляется столб металла, распола­гающийся над отверстием стакана, а объемы металла, находящиеся вблизи стенок ковша, не перемещаются и по­ступают на разливку в последнюю очередь. Создается различие по темпе­ратуре и свойствам этих объемов ме­талла (в сравнении с температурой и свойствами внутренних слоев), приво­дящее к нестабильности качества слитков, отлитых за время разливки. При входе жидкого металла в стакан происходит сжатие (сужение) струи, которое сохраняется до некоторой глубины, после чего поток снова рас­ширяется, заполняя все поперечное сечение стакана, т. е. в стакане имеет­ся зона пониженного статического давления (отрыв потока от стенок ка­нала и связанное с ним вихреобразо-вание являются основной причиной увеличения сопротивления движе­нию жидкости в струе, а также захва­та струей воздуха). Дополнительная трудность при решении проблемы организации истечения струи металла из ковша связана с тем, что по мере опорожнения ковша изменяется напор металла (высота металла в ковше уменьшается). Может оказаться, что удовлетворительный характер истече­ния струи в начале разливки (неболь­шое отношение диаметра струи к вы­соте столба металла в ковше) сменяет­ся неудовлетворительным в конце раз­ливки (при неизменном диаметре струи напор металла резко уменьшил­ся). На характер движения металла в ковше и стакане влияет также место­положение стакана относительно стен ковша. На практике для организации, нормальной разливки используют ряд приемов.

    1. Сечение, размеры и форму раз­ливочного стакана и его расположе­ние в ковше выбирают по результатам предварительного моделирования с учетом размеров ковша, состава стали и необходимой скорости разливки. Сечение стаканов может быть круг­лым, эллиптическим, крестообразным и т.д. (рис. 23.8).

    2. Применяют удлиненные стака­ны, с тем чтобы металл проходил по разливочному стакану, не соприка­саясь с окружающим воздухом (рис. 23.9).

    3. Защищают струи металла, выте­кающего из ковша, инертным газом, подаваемым из кольцеобразного уст­ройства, окружающего струю.

    4. Инертный газ подают непосред­ственно в стакан, в результате условия истечения струи определяются не из­меняющимся по ходу разливки напо-



    Рис. 23.8. Формы сталеразливочных конфузорных стаканов: а — щелевого для отливки листовых слитков; 6— крестового



    Рис. 23.9. Схема подвода стали в кристалли­затор затопленной струей (под уровень ме­талла):

    7 —стопор; 2—ковш; 3 — удлиненный разливоч­ный стакан; 4— уровень жидкого металла в крис­таллизаторе
    ром металла, а воздействием выходя­щего из пористых стенок стакана инертного газа.

    5. Перемешивают металл в ковше.

    6. Применяют промежуточные раз­ливочные устройства (воронки, про­межуточные ковши и т. п.), позволяю­щие разливать металл почти до конца разливки всей плавки с неизменной и требуемой скоростью истечения.

    23.1.3. Промежуточные разливочные устройства способствуют уменьшению разбрызгивания при ударе струи о дно изложницы или о поверхность разли­ваемого металла. Применение таких промежуточных разливочных уст­ройств, как воронки, корытообразные футерованные емкости с несколькими отверстиями в днище и т. п., ограни­чено отдельными случаями (напри­мер, разливка единичных крупных слитков для поковок). Применение промежуточных ковшей получило ши­рокое распространение при непре­рывной разливке, когда характер воз­действия струи на кристаллизующий­ся металл имеет особое влияние на ка­чество слитка.

    Промежуточный ковш является дополнительным звеном в технологи­ческой цепочке сталеплавильный аг­регат—сталеразливочный ковш—сли­ток. Однако, несмотря на определен­ные затраты, связанные с изготовле­нием промежуточных ковшей и их обслуживанием, применение этого до­полнительного звена целесообразно. Получаемые от использования проме­жуточных ковшей преимущества сво­дятся к следующему: 1) обеспечивает­ся разливка практически всей плавки с одинаковой скоростью и характером истечения струи металла; 2) суще­ственно уменьшается удар струи ме­талла при разливке; 3) можно вести разливку сверху одновременно на не­сколько слитков; 4) в необходимых случаях можно осуществлять допол­нительные операции по исправлению состава и повышению качества метал­ла; 5) при непрерывной разливке мож­но разливать несколько плавок без пе­рерыва струи металла, вытекающей из промежуточного ковша (так называе­мый метод «плавка на плавку»). Неко­торый запас металла в промежуточном ковше позволяет продолжать разливку в то время, пока один опорожненный большой разливочный ковш заменяют другим.

    К недостаткам применения про­межуточных ковшей относятся:

    1) дополнительная поверхность кон­такта струи металла с окружающим воздухом между большим разливоч­ным и промежуточным ковшами вы­зывает вторичное окисление металла и взаимодействие его с воздухом;

    2) дополнительная операция пропус­ка металла через промежуточный ковш приводит к усилению охлажде­ния металла.

    Приведенные недостатки при ис­пользовании промежуточных ковшей устраняются путем усовершенствова­ния их конструкций: применяют про­межуточные ковши, непосредственно прикрепляемые к большим разливоч­ным (для уменьшения контакта струи с воздухом), используют ковши с крышкой для уменьшения потерь тепла, ковши с огнеупорными пере­городками для улучшения условий всплывания неметаллических вклю­чений и т. д.
    1   ...   52   53   54   55   56   57   58   59   ...   88


    написать администратору сайта