Главная страница
Навигация по странице:

  • 24.1.4. Явления, сопутствующие кристаллизации.

  • 24.1.5. Явления усадки при кристал­лизации

  • 24.2. ОСОБЕННОСТИ СТРОЕНИЯ СЛИТКА СПОКОЙНОЙ СТАЛИ Обычная структура слитка спокойной стали (рис. 24.5) характеризуется на­личием шести основных зон.24.2.1.

  • Тонкий поверхностный слой

  • 24.2.2. Зона столбчатых кристаллов.

  • 24.2.3. Зона, характеризующаяся за­медлением роста кристаллов

  • 24.2.4. Зона беспорядочно ориенти­рованных кристаллов.

  • 24.2.5 . Зона конуса осаждения

  • Теория и технология производства стали 1. Учебник для вузов. М. Мир, ООО Издательство act


    Скачать 7.23 Mb.
    НазваниеУчебник для вузов. М. Мир, ООО Издательство act
    АнкорТеория и технология производства стали 1.doc
    Дата22.04.2017
    Размер7.23 Mb.
    Формат файлаdoc
    Имя файлаТеория и технология производства стали 1.doc
    ТипУчебник
    #5208
    страница61 из 88
    1   ...   57   58   59   60   61   62   63   64   ...   88

    24.1.3. Скорость кристаллизации слитка, т. е. увеличение во вре­мени толщины закристаллизовавше­гося слоя, зависит от поперечного се­чения слитка (т. е. от его массы), раз­ности температур разливаемой стали и изложницы, а также скорости отвода тепла изложницей или кристаллизато­ром. Между толщиной закристаллизо­вавшегося слоя металла sи продолжи­тельностью кристаллизации т установ­лено соотношение s = k, где k— эм­пирический коэффициент, значение которого в зависимости от условий затвердевания слитка находится в пре­делах 2,3—3,0 см/мин1/2. Это соотно­шение часто называют формулой квад­ратного корня.

    24.1.4. Явления, сопутствующие кристаллизации. Кристаллизующаяся сталь всегда содержит большее или меньшее количество примесей, кото­рые являются причиной образования ряда дефектов. В реальных кристаллах всегда имеет место неоднородное рас­пределение примесей. Примесь изме­няет параметры решетки, и на грани­цах областей разного состава возника­ют внутренние напряжения. Это при­водит к образованию дислокаций и трещин. Дислокации при кристалли­зации возникают и как результат упру­гих напряжений в неравномерно на­гретом кристалле, а также при нарас­тании более горячих новых слоев на более холодную поверхность. В стали всегда содержатся газы (водород, азот), растворимость которых в твер­дом металле существенно ниже, чем в жидком. Соответственно при кристал­лизации растворимость газов резко снижается и сверхравновесные коли­чества газов выделяются на фронте ра­стущих кристаллов. При большой ско­рости кристаллизации пузыри этих га­зов могут захватываться растущим кристаллом. Также захватываются и посторонние твердые частицы из ма­точной среды; все они становятся за­тем источниками внутренних напря­жений в кристалле.

    Кристаллизация стали сопровож­дается явлением ликвации1 содержа­щихся в ней примесей. Ликвация воз­никает в результате того, что сталь в отличие от чистого железа кристалли­зуется не при определенной темпера­туре, а в интервале температур. При этом состав кристаллов, образующих­ся в начале затвердевания, может су­щественно отличаться от состава пос­ледних порций кристаллизующегося маточного раствора. Чем шире темпе­ратурный интервал кристаллизации сплава, тем большее развитие получа­ет ликвация. Наибольшую склонность к ликвации (склонность ликвировать) проявляют те компоненты сплава, ко­торые наиболее сильно влияют на ши­рину интервала кристаллизации. Яв­ление ликвации примесей при крис­таллизации стального слитка было впервые обнаружено в 1866г. русски­ми металлургами Н. В. Калакуцким и А. С. Лавровым.

    В соответствии с диаграммой со­стояния данного сплава раствори­мость той или иной примеси (углеро­да, серы и т. д.) изменяется при изме­нении температуры. Обычно раство­римость примесей при снижении температуры уменьшается; это прежде всего важно в отношении к таким эле­ментам, которые в большем или мень­шем количестве имеются в каждой стали (углерод, сера, фосфор). Все эти элементы имеют ограниченную ра­створимость в железе в твердом состо­янии.

    Изучая диаграммы состояния Fe-C, Fe-S, Fe-P и др., можно для данных исходных концентраций углерода, серы, фосфора и других элементов проследить, как изменяется состав расплава при понижении температу­ры. По мере понижения температуры остающийся незатвердевшим расплав становится все более загрязнен приме­сями (их часто называют ликватами), в то время как первые порции закрис­таллизовавшегося металла относи­тельно чисты (явление образования вначале чистых по составу кристаллов называют избирательной кристаллиза­цией). При очень высоких скоростях охлаждения металл затвердевает на­столько быстро, что явление ликвации проявляется слабо и состав металла однороден. При уменьшении скорос­ти затвердевания явление ликвации примесей становится заметным. На­пример, кристаллизующиеся в первую очередь оси дендритов чище, чем за­стывающий в последнюю очередь ма­точный раствор, находящийся в про­странстве между дендритами.

    Если разрезать закристаллизовав­шийся слиток и протравить поверх­ность разреза в зоне столбчатых кри­сталлов, то можно увидеть относи­тельно чистые оси дендритов и более загрязненные (и хорошо растворяю­щиеся при травлении) участки между осями. Это проявилась так называемая дендритная ликвация. По мере роста зоны столбчатых кристаллов усилива­ется различие в составе стали в отно­сительно чистой зоне растущих крис­таллов и в более загрязненной маточ­ным раствором; находящимся в цент­ре слитка и кристаллизующимся в последнюю очередь. Ликваты легче чистого железа; они всплывают в верх­нюю часть слитка. Явление различия в составе отдельных зон слитка получи­ло название зональная ликвация или сегрегация1. Растворимость газов при кристаллизации уменьшается, поэто­му процесс ликвации примесей сопро­вождается процессом газовыделения. Поднимающиеся пузыри газа переме­шивают металл и одновременно увле­кают с собой металл с повышенным содержанием ликватов. В большин­стве случаев межфазное натяжение на границе газ (газовый пузырь)—вклю­чение г-вклменьше межфазного натя­жения на границе металл—включением-вкл, т. е. г.вкл < м.вкл. Это означает, что включение лучше смачивается га­зом (прилипает к нему), чем металлом. Таким образом, столб поднимающих­ся газовых пузырьков увлекает скоп­ления различных ликватов и загрязне­ний. Если разрезать затвердевший слиток и исследовать его внутреннюю часть, то можно обнаружить следы этого подъема в виде полос загряз­ненного ликватами металла, так на­зываемая Л-образная ликвация или «усы». Форма ликвационных полос (рис. 24.3) зависит от состояния про­цессов кристаллизации, газовыделе­ния и движения металла в изложнице.

    Для характеристики тенденции данного элемента к ликвации (воз­можной степени ликвации) часто ис­пользуют коэффициент ликвации К (см. табл. 24.1). Ликвация может быть тем больше, чем меньше численное значение коэффициента К, т. е. чем больше разность 1 — К. Ликвация мо­жет происходить только в тех случаях, когда при температуре, соответствую­щей затвердеванию, содержание при­месей больше, чем максимальная рас­творимость в твердом растворе.

    В качестве примера расчета рас­смотрим верхний левый угол диаграм­мы Fe-C (рис. 24.4). В области -Fe для случая жидкой стали с содержани­ем 0,075 % С (точка Н) концентрация углерода в затвердевающей последней капле жидкости в соответствии с диа-



    Рис. 24.3. Схема ликва­ции в слитке спокой­ной стали:

    /—Л-образная ликвация; 2 — V-образная; (++) — зона положительной лик­вации; (----) — зона отри­цательной ликвации



    Рис. 24.4. Верхняя часть диаграммы Fe-C
    граммой состояния равна 0,59 %, отку­да коэффициент ликвации для углеро­да К= 0,075 : 0,59 = 0,13; (1 - К) = 1 - 0,13 = 0,87. Величина (1 - К) харак­теризует тенденцию углерода к ликва­ции в железе. На основе данных о значении (1 — К) для ряда элементов, приведенных в табл.^4.1, углерод, сера, фосфор имеют большую склон­ность к ликвации.

    Степень ликвации примесей в слитке колеблется в широких преде­лах — в зависимости от продолжитель­ности процесса затвердевания слитка, интенсивности его охлаждения и пе­ремешивания жидкого металла в тече­ние всего периода затвердевания. Чем выше интенсивность охлаждения, меньше продолжительность затверде­вания и ниже интенсивность переме­шивания, тем в меньшей мере успева­ют развиться ликвационные явления.

    Степень ликвации определяют раз­ными способами, но чаще всего на ос­нове анализа проб металла в отдель­ных зонах слитка и определения раз­ности максимальной концентрации данного компонента (данной приме­си) Cmax в какой-то зоне слитка и ми­нимальной в другой зоне Cmin, т. е. Cmax — Cmin Значение этой разно­сти относят к

    Cmin или к Сковш, т.е. концентрации данного компонента в ков­шовой пробе: [(Cmax – Сmin)/Cmin] • lOO % или [(Сmах – Сmin)/Сковш] • 100 %.

    В тех случаях, когда определяют сте­пень ликвации в отдельной зоне слитка, степень ликвации рассчитывают по уравнению [(С3 - Cковш)/Оковш] •100 %, где С3 — концентрация данного ком­понента в данной зоне. Рассчитанная по этой формуле степень ликвации может быть положительной и отрица­тельной. Обычно в средней и верхней частях слитка ликвация положитель­ная, т. е. наблюдается повышенное содержание ликвирующих примесей. В нижней части слитка часто наблюда­ется отрицательная ликвация.

    Большая чистота металла в нижней части слитка объясняется одновре­менным влиянием следующих двух факторов:

    1. Ускоренным охлаждением метал­ла вследствие охлаждающего воздей­ствия массивного металлического под­дона и отсутствия малотеплопроводно­го воздушного зазора между поддоном и дном стоящего на поддоне слитка.

    2. Опусканием более плотных (по сравнению с жидким металлом) твер­дых кристаллов. Плотность твердого металла выше, чем жидкого, и обло­мившиеся под воздействием конвек­тивных потоков жидкости концы ден-дритов медленно опускаются на дно слитка. В результате их падения в нижней части слитка образуется так называемый конус осаждения. По­скольку оси растущих кристаллов чище, чем маточный раствор, металл в зоне конуса осаждения обычно чище. Однако в тех случаях, когда для уско­рения кристаллизации и измельчения структуры в металл вводят модифика­торы, при взаимодействии которых с растворенным в металле кислородом образуются тугоплавкие оксиды, в донной части слитка могут наблюдать­ся скопления этих оксидов (они были центрами кристаллизации и опусти­лись вместе с кристаллами в нижнюю часть слитка).

    24.1.5. Явления усадки при кристал­лизации. При затвердевании слитка наблюдается явление, связанное с раз­личием плотностей жидкой и твердой стали. При охлаждении стали ее объем несколько уменьшается, однако наи­более заметное уменьшение объема происходит в момент перехода из жидкого в твердое состояние. Умень­шение линейных размеров и объема стали при переходе из жидкого в твер­дое состояние называют усадкой. Раз­личают линейную и объемную усадку. Если обозначить соответствующий размер изложницы или кристаллиза­тора l1, объем V1, а размер слитка пос­ле затвердевания — l2 и объем V2, то величину [(l1l2)/l2] •100 % называют линейной усадкой; соответственно ве­личину [(V1 - V2)/V 2] •100 % называют объемной усадкой. Процесс усадки ста­ли при ее кристаллизации существен­но влияет на ход формирования струк­туры слитка и на его качество. Так, вскоре после наполнения изложницы, во время образования столбчатых кри­сталлов доля затвердевшего металла (относительно всей массы слитка) ста­новится уже заметной. Поскольку объем затвердевшего металла меньше объема, который занимал жидкий ме­талл, общий объем кристаллизующе­гося слитка уменьшается. Практичес­ки это выражается в том, что между изложницей и слитком образуется воздушный зазор. В свою очередь, об­разование зазора приводит к резкому (в 3—5 раз) снижению интенсивности теплоотвода, замедляет процесс крис­таллизации слитка и т. п. С явлением усадки связаны температурные и уса­дочные напряжения, склонность к трещинообразованию и др. Усадка при затвердевании слитка зависит от состава стали, прежде всего от содер­жания углерода, и увеличивается с ро­стом интервала кристаллизации:
    Содержание углерода, % 0,10 0,35 0,45 0,70

    Уменьшение объема ста­ли при затвердевании, % 2,0 3,0 4,3 5,3
    Объем затвердевшего и остывшего слитка VXOJI меньше объема залитого в изложницу или кристаллизатор жид­кого металла Vг°р на величину, скла­дывающуюся из уменьшения объема при охлаждении жидкого металла Vохлж, величины усадки при переходе из жидкого в твердое состояние Vус и уменьшения объема при охлаждении затвердевшего горячего слитка до нор­мальной температурыVохлтв , т. е.
    Vг°р - VXOJI = Vохлж + Vус + Vохлтв

    Решающее влияние на разность Vг°р - VXOJI оказывает усадкаVус. На линейные размеры слитка после усад­ки влияет процесс газовыделения при кристаллизации. Часть выделяющихся газов не успевает выделиться и остает­ся в слитке, увеличивая его объем. По­этому объемную усадку можно рас­считать, зная точно, какой объем зас­тывшего слитка занимают газы. Для грубых подсчетов можно принять, что объемная усадка слитка составляет 3,0-3,5%.

    Таким образом, кристаллизация стали в слитки сопровождается рядом процессов, таких, как ликвация, выде­ление газов, всплывание включений, усадка и т. д. Все эти процессы влияют на строение формирующегося слитка и качество металла. Кроме того, стро­ение слитка зависит от состава стали (спокойная, кипящая, полуспокойная сталь) и от способа разливки (в излож­ницу сверху, сифоном, непрерывный).

    Исследования процессов кристалли­зации проводили и проводят тысячи ученых во всем мире. Напомним о роли нашего соотечественника Д. К. Черно­ва. Опубликованная в 1878г. работа Д. К. Чернова «Исследования, относя­щиеся до структуры литых стальных болванок», подытожила все, что было известно ранее по этому вопросу и дала исчерпывающе ясную теорию формирования слитка. Д. К. Чернов впервые доказал, что сталь является кристаллическим телом; дал общепри­нятую в настоящее время схему структурных зон слитка; основал тео­рию последовательной кристаллизации; объяснил механизм образования уса­дочных раковин и рыхлости, трещин, газовых пузырей, внутренних напря­жений, дендритной структуры; изучил и сопоставил свойства литого и кова­ного металла; высказал соображения о периодической кристаллизации стали.

    24.2. ОСОБЕННОСТИ СТРОЕНИЯ СЛИТКА СПОКОЙНОЙ СТАЛИ
    Обычная структура слитка спокойной стали (рис. 24.5) характеризуется на­личием шести основных зон.

    24.2.1. Тонкий поверхностный слой образуется в момент соприкосновения жидкого металла со стенками излож­ницы или кристаллизатора. Этот слой (часто называемый корочкой слитка) состоит из мелких беспорядочно ори­ентированных кристаллов; по хими­ческому составу он близок к составу жидкого металла в ковше.

    24.2.2. Зона столбчатых кристаллов. Протяженность и характер этой зоны определяются составом стали, интен­сивностью охлаждения и разностью температур жидкого маточного ра­створа и внешней охлаждаемой поверх­ности. По мере увеличения ширины


    Рис. 24.5. Схема кристалличес­кой структуры слитка спокой­ной стали:

    / — мост над рако­виной; 2— усадоч­ная раковина; 3, 4 — пустоты и рых­лость; 5 — различ­но ориентирован­ные кристаллиты; 6 — мелкие равно­осные кристалли­ты; 7, 8— зоны столбчатых крис­таллитов; 9—столб­чатые кристалли­ты, направленные к тепловому цент­ру; 10— конус осаждения
    зоны столбчатых кристаллов интен­сивность передачи тепла через этот утолщающийся слой снижается; одно­временно уменьшается охлаждающая способность нагревающейся изложни­цы; начинающаяся усадка слитка приводит к образованию зазора меж­ду изложницей и корочкой слитка, что также резко ухудшает условия теплоотвода.

    24.2.3. Зона, характеризующаяся за­медлением роста кристаллов, уменьше­нием их размеров и некоторым их от­клонением вверх, в сторону теплового центра слитка. Медленно растущие кристаллы уже не успевают «захваты­вать» выделяющиеся при кристалли­зации газы; цепочка этих газов увле­кает с собой ликваты, и в затвердев­шем слитке остаются соответствую­щие следы (-образная ликвация, или «усы»). Конец кристаллизации третьей зоны соответствует моменту образова­ния по всему периметру слитка тепло­изолирующего зазора между застыв­шим слитком и изложницей. Темпера­тура изложницы к этому моменту дос­тигает температуры красного каления, а направленный теплоотвод в зоне ос­тавшегося жидкого металла практи­чески прекращается, и начинается постепенное охлаждение всей жидкой массы металла, оставшейся в центре слитка.

    24.2.4. Зона беспорядочно ориенти­рованных кристаллов. Сопровождаю­щие кристаллизацию ликвационные явления приводят к тому, что в остав­шемся в центре слитка маточном ра­створе имеется большое число цент­ров кристаллизации. В результате эта (осевая) зона слитка характеризует­ся наличием беспорядочно ориенти­рованных равноосных кристаллов. Вследствие усадки слитка обычными дефектами этой зоны являются осевая рыхлость и V-образная ликвация.

    24.2.5. Зона конуса осаждения имеет конусообразную форму и расположе­на в нижней части слитка. Эта область представляет собой конгломерат срос­шихся кристаллов, часть которых рос­ла вверх под влиянием охлаждающего действия поддона, часть опускалась вниз в результате обламывания крис­таллов второй и третьей зон, а также оседания кристаллов при кристалли­зации осевой части слитка. Пересече­ние кристаллов второй зоны, расту­щих в горизонтальном, и кристаллов пятой зоны, растущих в вертикальном направлениях, дает на разрезе слитка рисунок конуса без четко обозначен­ной вершины. Донная часть слитка (пятая зона) в большинстве случаев характеризуется отрицательной сегре­гацией таких примесей, как углерод, фосфор, сера; однако в случае введе­ния в металл сильных раскислителей и десульфураторов, образующих туго­плавкие оксиды и сульфиды, способ­ных служить центрами кристаллиза­ции (например, алюминий или РЗМ), в зоне конуса охлаждения обнаружи­вается также повышенное содержание таких тугоплавких включений, как А12О3) CeO, CeS и т. п.
    1   ...   57   58   59   60   61   62   63   64   ...   88


    написать администратору сайта