Главная страница

Удк 159. 9 Ббк88 р 12 Федеральная программа книгоиздания России Рецензенты канд психол наук С. А. Исайчев, доктор биол наук И. И. Полетаева РавичЩербо ив и др Р


Скачать 3.61 Mb.
НазваниеУдк 159. 9 Ббк88 р 12 Федеральная программа книгоиздания России Рецензенты канд психол наук С. А. Исайчев, доктор биол наук И. И. Полетаева РавичЩербо ив и др Р
Дата26.01.2022
Размер3.61 Mb.
Формат файлаpdf
Имя файла1ravich_shcherbo_i_v_maryutina_t_m_grigorenko_e_l_psikhogenet.pdf
ТипПрограмма
#342889
страница7 из 42
1   2   3   4   5   6   7   8   9   10   ...   42
2. ЗАКОН ЕДИНООБРАЗИЯ ГИБРИДОВ ПЕРВОГО ПОКОЛЕНИЯ (ПЕРВЫЙ ЗАКОН МЕНДЕЛЯ) Данный закон утверждает, что скрещивание особей, различающихся поданному признаку (гомозиготных по разным аллелям, дает генетически однородное потомство (поколение F
1
), все особи которого гетерозиготны. Все гибриды могут иметь при этом либо фенотип одного из родителей (полное доминирование, как в опытах Менде- ля, либо, как было обнаружено позднее, промежуточный фенотип неполное доминирование. В дальнейшем выяснилось, что гибриды первого поколения F
1
, могут проявить признаки обоих родителей (кодо- минирование. Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и а) все их потомки одинаковы по генотипу (гетерозиготны — Аа), а значит, и по фенотипу.
* Интересующимся историей генетики можно посоветовать прекрасное изложение ее в книге А.Е. Гайсиновича Зарождение и развитие генетики (М, 1988).
70

3. ЗАКОН РАСЩЕПЛЕНИЯ (ВТОРОЙ ЗАКОН МЕНДЕЛЯ) Этот закон называют законом (независимого) расщепления. Суть его состоит в следующем. Когда у организма, гетерозиготного по исследуемому признаку, формируются половые клетки — гаметы, то одна их половина несет один аллель данного гена, а вторая — другой. Поэтому при скрещивании таких гибридов между собой среди гибридов второго поколения в определенных соотношениях появляются особи с фенотипами как исходных родительских форм, таки В основе этого закона лежит закономерное поведение пары гомологичных хромосом (с аллелями Аи а, которое обеспечивает образование у гибридов гамет двух типов, в результате чего среди гибридов выявляются особи трех возможных генотипов в соотношении
1АА : 2Аа : 1аа. Иными словами, внуки исходных форм - двух гомозигот, фенотипически отличных друг от друга, дают расщепление по фенотипу в соответствии со вторым законом Менделя. Однако это соотношение может меняться в зависимости от типа наследования. Так, в случае полного доминирования выделяются 75% особей с доминантными с рецессивным признаком, те. два фенотипа в отношении 3:1. При неполном доминировании и кодомини- ровании 50% гибридов второго поколения (F
2
) имеют фенотип гибридов первого поколения и по 25% — фенотипы исходных родительских форм, те. наблюдается расщепление 1:2:1. Приведем некоторые примеры этих типов наследования. ДОМИНАНТНОЕ НАСЛЕДОВАНИЕ БОЛЕЗНЬ ГЕНТИНГТОНА ХОРЕЯ ГЕНТННГТОНА) Хорея Гентингтона (ХГ) — дегенеративное заболевание нервных клеток в базальных структурах переднего мозга. Оно начинается сиз- менений личности больного и сопровождается прогрессирующей забывчивостью, слабоумием и появлением непроизвольных движений. Обычно заболевание диагностируется в зрелом возрасте (45-60 лети в течение последующих 15-20 лет пациент полностью теряет контроль над моторикой и когнитивной сферой. Способ лечения этого заболевания пока неизвестен. Частота встречаемости ХГ составляет примерно на 20 000 человек, те. примерно четверть миллиона человек наземном шаре сегодня больны или в скором времени заболеют ХГ. При изучении родственников больных ХГ выяснилось, что это заболевание может быть прослежено в семьях пациентов намного поколений назад и что ХГ наследуется согласно определенному механизму по крайней мере один из родителей каждого пациента страдал этим заболеванием и примерно половина детей этих больных также страдают им. Рис. 2.1 представляет собой иллюстрацию родословной семьи пробанда — носителя заболевания, страдающего ХГ.
71

ХГ передается по наследству как доминантный признак. Индивидуум, страдающий
ХГ, является носителем одного доминантного аллеля
(X), вызывающего развитие заболевания, и одного нормального рецессивного) аллелях. Крайне редки случаи, когда пациент имеет два доминантных аллеля — эта ситуация предполагает, что оба родителя такого пациента страдают
ХГ. Люди, не страдающие
ХГ, обладают двумя рецессивными аллелями
(хх). Родитель, страдающий
ХГ, чаще всего является носителем генотипа
Хх ив момент скрещивания порождает гамету яйцо или спер- мий) либо с Х, либо с х аллелем. Гаметы нормального родителя всегда содержат рецессивные аллели х. Четыре возможных комбинации этих аллелей показаны на рис. 2.2. Дети таких родителей всегда наследуют один здоровый аллель, передаваемый по наследству нормальным родителем. Однако, поскольку при зачатии аллели родителей комбинируются по случайному закону, для каждого из потомков вероятность наследования аллеля X от родителя, страдающего ХГ, Рис. 2.2.
Схема скрещивания аллельный механизм наследования хореи
Гентингтона (пример доминантного наследования. Х — доминантный аллель, вызывающий развитие ХГ; х
— рецессивный аллель здоровый.
72
составляет 50%. Этими объясняется тот факт, что у родителей, пораженных ХГ, только 50% детей страдают тем же заболеванием. Для ХГ характерна одна особенность первые симптомы этого заболевания проявляются лишь в зрелом возрастете. тогда, когда большинство людей уже создали семью и обзавелись детьми. Вином случае пациенты, страдающие ХГ, вообще не могли бы иметь потомков, так как умирали бы до наступления половой зрелости. Передача по наследству доминантного аллеля X возможна именно потому, что его летальный эффект не проявляется до начала репродуктивного периода. Эта особенность развития ХГ создает чрезвычайно щепетильную психологическую ситуацию. В 1993 г. ученые открыли ген на хромосоме 4, вызывающий ХГ, и разработали молекулярно-генетический метод, позволяющий тестировать каждого человека стем, чтобы определить, является ли данный индивидуум носителем патологического аллеля-мутанта (аллеля X). Представьте себе следующую ситуацию. Ваши бабушка и дедушка по материнской линии умерли достаточно рано, ив семье не сохранилось никаких свидетельств того, что один из них, возможно, был носителем гена ХГ. Вашей матери 53, она больна ХГ. Вами у Вас есть возможность обратиться в лабораторию клинической генетики стем, чтобы Вам сказали, являетесь Вы носителем гена X или нет. Вероятность того, что Вы — носитель этого гена, достаточно велика и составляет приблизительно 50%. Захотите ли Вы пройти подобный тест Исследования показывают, что большинство взрослых людей, для которых риск развития ХГ высок (поскольку один из родителей болен, предпочитают подобный тест не проходить. Этот тест, однако, имеет принципиально другое значение в пренатальной диагностике, когда заранее можно определить, является ли развивающийся организм носителем аллеля X. Ранняя пре- натальная диагностика позволяет родителям сделать осмысленный выбор относительно жизни их будущего ребенка, а также создает возможность раннего пренатального клинического вмешательства. РЕЦЕССИВНОЕ НАСЛЕДОВАНИЕ ФЕНИЛКЕТОНУРИЯ Закон расщепления объясняет и наследование фенилкетонурии
(ФКУ) — заболевания, развивающегося в результате избытка важной аминокислоты — фенилаланина (Phe) в организме человека. Избыток фенилаланина приводит к развитию умственной отсталости. Частота встречаемости ФКУ относительно низка (примерно 1 наново- рожденных, тем не менее около 1% умственно отсталых индивидуумов страдают ФКУ, составляя, таким образом, сравнительно большую группу пациентов, умственная отсталость которых объясняется однородным генетическим механизмом. Как ив случае ХГ, исследователи изучали частоту встречаемости
ФКУ в семьях пробандов. Оказалось, что пациенты, страдающие ФКУ, обычно имеют здоровых родителей. Кроме того, было замечено, что
ФКУ чаще встречается в семьях, в которых родители являются кровными родственниками. Пример семьи пробанда, страдающего ФКУ,
73
оказан на рис. 2.3: больной ребенок родился у фенотипи- чески здоровых родителей- кровных родственников двоюродных брата и сестры, но сестра отца ребенка страдает
ФКУ.
ФКУ передается по рецессивному типу наследования, те. генотип больного содержит два аллеля
ФКУ, полученные от обоих родителей. Потомки, которые имеют только один такой аллель, не страдают заболеванием, но являются носителями аллеля
ФКУ и могут передать его своим детям. На рис. 2.4 показаны пути наследования аллелей ФКУ от двух фенотипически нормальных родителей. Каждый из родителей имеет один аллель ФКУ и один нормальный аллель. Вероятность того, что каждый ребенок может унаследовать аллель ФКУ от каждого из родителей, составляет 50%. Вероятность того, что ребенок унаследует аллели ФКУ от обоих родителей одновременно, составляет 25%
(0,5 х 0,5 = 0,25; вероятности умножаются, поскольку события наследования аллелей от каждого из родителей независимы друг от друга. Ген ФКУ и его структурные варианты, встречающиеся в разных популяциях, хорошо изучены. Знания, имеющиеся в нашем распоря- Рис. 2.4.
Схема скрещивания аллельный механизм наследования ФКУ. Ф — доминантный аллель (здоровый ф — рецессивный аллель, вызывающий развитие заболевания. ФФ, Фф — фенотипически нормальные дети (их 75%); только имеют нормальный генотип (ФФ); еще 50% фенотипически здоровы, но являются носителями аллеля ФКУ (Фф). Оставшиеся 25% потомков — больны

([ф][ф]).
74 Рис. 2.3. Пример родословной семьи, в которой
ФКУ передается по наследству (тетя пробанда страдает этим заболеванием. Двойная линия между супругами обозначает кровнородственный брак. Остальные обозначения те же, что и на рис. 2.1.
жении, позволяют проводить своевременную пренатальную диагностику стем, чтобы определить, унаследовал ли развивающийся зародыш две копии аллеля ФКУ от обоих родителей (факт такого наследования резко повышает вероятность заболевания. В некоторых странах, например в Италии, где частота встречаемости ФКУ достаточно высока, такая диагностика проводится в обязательном порядке для каждой беременной женщины. Как уже отмечалось, ФКУ чаще встречается среди тех, кто вступает в брак с кровными родственниками. Несмотря на то что встреча- емость ФКУ сравнительно низка, примерно 1 человек из 50 является носителем аллеля ФКУ. Вероятность того, что один носитель аллеля
ФКУ вступит в брак с другим носителем такого аллеля, составляет примерно 2%. Однако при заключении брака между кровными родственниками (те. если супруги принадлежат к одной родословной, в которой аллель ФКУ передается по наследству) вероятность того, что оба супруга окажутся носителями аллеля ФКУ и одновременно передадут два аллеля будущему ребенку, станет значительно выше 2%.
4. ЗАКОН НЕЗАВИСИМОГО КОМБИНИРОВАНИЯ НАСЛЕДОВАНИЯ) ПРИЗНАКОВ ТРЕТИЙ ЗАКОН МЕНДЕЛЯ) Этот закон говорит о том, что каждая пара альтернативных признаков ведет себя в ряду поколений независимо друг от друга, в результате чего среди потомков первого поколения (те. в поколении F
2
) в определенном соотношении появляются особи с новыми (по сравнению с родительскими) комбинациями признаков. Например, в случае полного доминирования при скрещивании исходных форм, различающихся по двум признакам, в следующем поколении (F
2
) выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1. При этом два фенотипа имеют родительские сочетания признаков, а оставшиеся два - новые. Данный закон основан на независимом поведении (расщеплении) нескольких пар гомологичных хромосом. Так, при дигибридном скрещивании это приводит к образованию у гибридов первого поколения (F
1
) 4 типов гамет (АВ, Ав, аВ, ав), а после образования зигот - к закономерному расщеплению по генотипу и, соответственно, по фенотипу в следующем поколении (F
2
). Парадоксально, нов современной науке огромное внимание уделяется не столько самому третьему закону Менделя в его исходной формулировке, сколько исключениям из него. Закон независимого комбинирования не соблюдается в том случае, если гены, контролирующие изучаемые признаки, сцеплены, те. располагаются по соседству друг с другом на одной и той же хромосоме и передаются по наследству как связанная пара элементов, а не как отдельные элементы. Научная интуиция Менделя подсказала ему, какие признаки должны быть выбраны для его дигибридных экспериментов, — он выбрал несцепленные признаки. Если бы он случайно выбрал признаки, контролируемые сцепленными генами, то его результаты были бы иными, поскольку сцепленные признаки наследуются не независимо друг от друга. Счем же связана важность исключений из закона Менделя о независимом комбинировании Дело в том, что именно эти исключения позволяют определять хромосомные координаты генов (так называемый локус. В случаях когда наследуемость определенной пары генов не подчиняется третьему закону Менделя, вероятнее всего эти гены наследуются вместе и, следовательно, располагаются на хромосе в непосредственной близости друг от друга. Зависимое наследование генов называется сцеплением, а статистический метод, используемый для анализа такого наследования, называется методом сцепления. Однако при определенных условиях закономерности наследования сцепленных генов нарушаются. Основная причина этих нарушений - явление кроссинговера, приводящего к перекомбинации (рекомбинации) генов. Биологическая основа рекомбинации заключается в том, что в процессе образования гамет гомологичные хромосомы, прежде чем разъединиться, обмениваются своими участками (подробнее о рекомбинации в гл. I и IV). Кроссинговер - процесс вероятностный, а вероятность того, произойдет или не произойдет разрыв хромосомы на данном конкретном участке, определяется рядом факторов, в частности физическим расстоянием между двумя локусами одной и той же хромосомы. Кроссинговер может произойти и между соседними локусами, однако его вероятность значительно меньше вероятности разрыва (приводящего к обмену участками) между локусами с большим расстоянием между ними. Данная закономерность используется при составлении генетических карт хромосом (картировании). Расстояние между двумя локусами оценивается путем подсчета количества рекомбинаций на 100 гамет. Это расстояние считается единицей измерения длины гена и называется сентиморганом в честь генетика Т. Моргана, впервые описавшего группы сцепленных генов у плодовой мушки дрозофилы — любимого объекта генетиков. Если два локуса находятся на значительном расстоянии друг от друга, то разрыв между ними будет происходить также часто, как при расположении этих локусов на разных хромосомах. Используя закономерности реорганизации генетического матери-
* Напомним, что локусом (лат. locus - место) называется местоположение определенного гена или маркёра (полиморфного участка ДНК) на генетической карте хромосомы. Иногда термин локус неоправданно используют как синоним понятия ген. Такое применение его неточно, поскольку речь может идти о положении не только гена, но и маркёра, находящегося в межгенном пространстве.
76
ала в процессе рекомбинации, ученые разработали статистический метод анализа, называемый анализом сцепления.
* * * Законы Менделя в их классической форме действуют при наличии определенных условий. К ним относятся
1) гомозиготность исходных скрещиваемых форм
2) образование гамет гибридов всех возможных типов в равных соотношениях (обеспечивается правильным течением мейоза одинаковой жизнеспособностью гамет всех типов равной вероятностью встречи любых гамет при оплодотворении
3) одинаковая жизнеспособность зигот всех типов. Нарушение этих условий может приводить либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении либо к искажению соотношения различных генотипов и фенотипов. Законы Менделя имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом. В целом они справедливы для аутосомных генов с полной пенетрантностью те. процентной частотой проявления анализируемого признака
100% пенетрантность подразумевает, что признак выражен у всех носителей аллеля, детерминирующего развитие этого признака) и постоянной экспрессивностью (те. постоянной степенью выраженности признака постоянная экспрессивность подразумевает, что фенотипичес- кая выраженность признака одинакова или примерно одинакова у всех носителей аллеля, детерминирующего развитие этого признака. Знание и применение законов Менделя имеет огромное значение в медико-генетическом консультировании и определении генотипа фенотипически здоровых людей, родственники которых страдали наследственными заболеваниями, а также в выяснении степени риска развития этих заболеваний у родственников больных. Глава
НЕМЕНДЕЛЕВСКАЯ ГЕНЕТИКА Гениальность законов Менделя заключается в их простоте. Строгая и элегантная модель, построенная на основе этих законов, служила генетикам точкой отчета на протяжении многих лет. Однако входе дальнейших исследований выяснилось, что законам Менделя подчиняются только относительно немногие генетически контролируемые признаки. Оказалось, что у человека большинство и нормальных, и патологических признаков детерминируются иными генетическими
77
механизмами, которые стали обозначать термином «неменделевская генетика. Таких механизмов существует множество, нов этой главе мы рассмотрим лишь некоторые из них, обратившись к соответствующим примерам, а именно хромосомные аберрации синдром Дауна); наследование, сцепленное с полом цветовая слепота импринтинг синдромы Прадера-Вилли, Энгельмана); появление новых мутации развитие раковых заболеваний экспансия (инсерция) повторяющихся нуклеотидных последовательностей (миотоническаядистрофия Дюшенна); наследование количественных признаков сложные поведенческие характеристики.
1. ХРОМОСОМНЫЕ АБЕРРАЦИИ СИНДРОМ ДАУНА Синдром Дауна (СД) - одно из весьма ограниченного числа наследуемых заболеваний, фенотип которого хорошо известен даже неспециалистам. Его известность является результатом того, что, во- первых, частота встречаемости СД достаточно высока и, во-вторых, фенотип этого заболевания легко узнаваем больным СД свойственны характерные внешние черты, выражение лица и умственная отсталость. Первые клинические и научные описания СД появились в середине прошлого века, а его точное определение было дано в 1866 г. Дж. Дауном, описавшим несколько таких пациентов. Гипотезы о том, что СД контролируется генетически, были сформулированы вначале в. Км годам было высказано предположение, что это заболевание развивается в результате аберрации хромосом (структурных отклонений в хромосомном наборе, причиной которой служит их не- расхождение в процессе мейоза. В 1959 г. было обнаружено, что СД вызывается трисомией хромосомы 21, те. наличием в клетках трех, а не двух, как обычно, хромосом. Сегодня известно, что примерно 1 из
600 новорожденных является носителем этой аномалии. Кроме того, по современным оценкам, примерно 1 из 150 оплодотворенных яйцеклеток человека является носительницей трисомии 21 (большинство яйцеклеток с трисомиями гибнет. Пациенты с СД составляют около 25% всех умственно отсталых, формируя самую большую этио- логически однородную группу умственно отсталых. Генетический механизм СД представляет собой иллюстрацию явления хромосомных аберраций. О них уже шла речь в гл. I. Коротко повторим сказанное там. Вовремя формирования половых клеток — гамет — все 23 пары хромосом делятся, и каждая гамета становится носителем одной хромосомы из каждой пары. Когда спермий оплодотворяет яйцеклетку, хромосомные пары восстанавливаются, причем в каждой паре одна хромосома приходит от матери, вторая — от отца. Несмотря на отлаженность процесса образования гамет, в нем случаются ошибки, и тогда разделение хромосомных пар нарушается появляется гамета, которая содержит не одну хромосому, а их пару. Это нарушение называется нерасхождением хромосом. Когда такая гамета при оплодотворении сливается с нормальной гаметой, образуется клетка стремя одинаковыми хромосомами подобное явление и называется трисомией см. рис. 1.7). Нерасхождение хромосом служит главной причиной спонтанных абортов в течение первых нескольких недель жизни плода. Тем не менее существует некоторая вероятность того, что зародыш с аномальным хромосомным набором продолжит развитие. Точная причина нерасхождения неизвестна. Надежным корреля- том трисомии является возраст матери согласно исследованиям, у
56% матерей старше 35 лет плоды оказываются носителями трисомии, ив таких случаях примерно 90% диагностированных женщин предпочитают искусственно прервать беременность. Поскольку СД появляется заново в каждом поколении (нерасхождение — единичное событие, вероятность появления которого увеличивается с возрастом матери, постольку СД нельзя рассматривать как заболевание, передающееся по наследству.
1   2   3   4   5   6   7   8   9   10   ...   42


написать администратору сайта