Главная страница
Навигация по странице:

  • Электростатическое взаимодействие

  • 7.1.2. Макромолекулярные и надмолекулярные эффекты Гидрофобное взаимодействие

  • 7.1.3. Кооперативные взаимодействия* (* По материалам статьи: Кабанов В. А.

  • 7.2.2. Вулканизация каучуков

  • Семчиков Ю.Д. Высокомолекулярные соединения. Высокомолекулярные соединения


    Скачать 12.87 Mb.
    НазваниеВысокомолекулярные соединения
    АнкорСемчиков Ю.Д. Высокомолекулярные соединения.docx
    Дата28.01.2017
    Размер12.87 Mb.
    Формат файлаdocx
    Имя файлаСемчиков Ю.Д. Высокомолекулярные соединения.docx
    ТипДокументы
    #935
    страница31 из 33
    1   ...   25   26   27   28   29   30   31   32   33
    ГЛАВА 7. ХИМИЯ ПОЛИМЕРОВ
    7.1. Характерные особенности макромолекул как реагентов
    7.1.1. Влияние соседних звеньев
    Согласно принципу Флори, реакционная способность функциональных групп макромолекул не должна отличаться от реакционной способности тех же групп в низкомолекулярных соединениях. Такие примеры действительно встречаются. Так, константы скорости и энергии активации реакции Меншуткина при взаимодействии метилиодида с пиридином и поли-4-винилпиридином практически одинаковы: k(75°С) = 10,7·10-6 и 7,8·10-6 л/(моль·с), EA =65,8 и 67,2 кДж/моль соответственно. Однако, чаще реакционная способность функциональных групп высоко- и низкомолекулярных соединений отличаются. Причины этого явления могут быть разными, одной из основных является влияние соседних звеньев.

    Эффект соседа. Эффект соседа наиболее просто может быть интерпретирован в чередующихся сополимерах. Так, звено малеинового ангидрида в сополимере этого мономера с этиленом реагирует в сто раз быстрее с анилином

    по сравнению с сополимером малеинового ангидрида с норборненом

    звенья которого затрудняют доступ реагента.

    В случае полимеров интерпретация наблюдаемых эффектов часто осложняется, так как в этом случае приходится учитывать три типа триад, отличающихся окружением реакционноспособного звена:

    где X - исходное, А - прореагировавшее мономерное звено. В общем случае константы скорости реакции X в различном окружении не равны, т.е. . Конечный результат, т.е. предельная глубина превращения X и время ее достижения зависят от соотношения между k1, k2, k3*, (*Платэ П. А., Литманович А. Д., Ноа О. В, Макромолекулярные реакции. М.: Химия, 1977.)

    Электростатическое взаимодействие. Электростатическое взаимодействие, обусловленное ионизацией соседних звеньев, наиболее часто приводит к возникновению эффекта соседа. В качестве примера можно указать на гидролиз полиметакриламида и полиметилметакрилата в щелочных средах:

    В обоих случаях скорость реакции ниже по сравнению с гидролизом низкомолекулярных аналогов, поскольку отрицательные заряды групп, подвергшихся гидролизу, отталкивают отрицательно заряженные гидроксидионы, вследствие чего их концентрация в области реакции уменьшается. В результате константа скорости реакции гидролиза полиметилметакрилата уменьшается на порядок с увеличением степени гидролиза эфирных групп. Примечательно, что этот эффект является более значительным для синдиотактического полиметилметакрилата по сравнению с изотактическим. В последнем случае две соседние функциональные группы находятся в положении, благоприятном образованию шестичленного интермедиата, предшествующего образованию внутримолекулярного ангидридного цикла:

    В случае щелочного гидролиза полиакриламида

    появление рядом с амидной группой двух карбоксилатных практически останавливает процесс гидролиза — около 30 % первых остаются непрореагировавшими.

    Весьма наглядно значение электростатического взаимодействия проявляется при нейтрализации поликислот и полиоснований, что детально рассмотрено в разд. 3.3.3.

    Эффект соседа, связанный с образованием ионизированных звеньев, может приводить к увеличению скорости реакции, что иллюстрируется реакцией гидролиза поли-n-нитрофенилметакрилата и низкомолекулярного аналога -n-нитрофенилового эфира изомасляной кислоты:

    Гидролиз первого соединения протекает в 104 раз быстрее, чем второго. Причина состоит в том, что возникающие в результате гидролиза ионизированные карбоксильные группы катализируют превращение соседних звеньев.
    7.1.2. Макромолекулярные и надмолекулярные эффекты
    Гидрофобное взаимодействие. Если реакция проводится в водном растворе полимера, то на ее скорость может оказать влияние сродство между гидрофобными группами макромолекулы и реагента. Известным примером является реакция гидролиза производных З-нитро-4-ацилоксибензойной кислоты (1), катализируемая низкомолекулярным имидазолом (2) и поли-4(5)-винилимидазолом (3) в водно-спиртовой среде.

    В том случае, когда катализатором является низкомолекулярный имидазол, константа скорости реакции не зависит от длины алкильной группы. Если в качестве катализатора используется поли-4(5)-винилимидазол, то скорость реакции значительно выше по сравнению с низкомолекулярным катализатором и, кроме того, она возрастает с увеличением числа метильных групп n в субстрате. Так, при n = 11, скорость реакции гидролиза в 30 раз больше по сравнению с n = 1. Считается, что этот эффект обусловлен гидрофобным взаимодействием, т.е. сродством между алкильной группой субстрата и отрезком полимерной цепи с примыкающими к нему имидазольными звеньями.

    Сольватационный эффект. При щелочном гидролизе поливинилацетата наблюдается автокаталитический характер реакции:

    Анализ зависимости скорости гидролиза от глубины превращения позволил определить константы скорости реакции омыления ацетатных групп в различных триадах (см. раздел 7.1.1). Оказалось, что k3/k1 = 100, т.е. скорость омыления ацетатной группы, находящейся в окружении гидроксильных групп, максимальна. Эффект связан с сольватацией гидроксид-ионами фрагментов цепи, содержащих группы -ОН, что приводит к увеличению концентрации катализатора в зоне реакции.
    7.1.3. Кооперативные взаимодействия* (* По материалам статьи: Кабанов В. А. Физико-химические основы и перспективы применения растворимых интерполимерных комплексов // Высокомолек. соед. А. 1994. Т. 36. № 2. С. 183.)
    Интерполиэлектролитные комплексы (ИПЭК) образуются в результате реакции соединения противоположно заряженных полиионов. Эта реакция имеет ярко выраженный кооперативный характер. Случайные столкновения полиионов приводят к возникновению точечных контактов в виде солевых связей, вслед за которыми возникают солевые связи соседних ионных пар, наподобие сцеплению звеньев застежки молнии:

    Этот процесс проходит с достаточно большой скоростью, но не мгновенно, как можно было бы предположить, исходя из его кооперативного характера. Медленная стадия обусловлена необходимостью соответствующей ориентации в пространстве участков цепей полианионов, участвующих в реакции.

    Наиболее просто ИПЭК могут быть получены при смешении водных растворов полианионов и поликатионов. В результате заряды противоположного знака образуют межцепные ионные связи, что приводит к возникновению двухтяжевой цепи из двух однотяжевых:

    Степень завершенности реакции 6 определяется отношением числа образовавшихся солевых связей к максимально возможному. Если n>m, то θ = x/m, в противном случае θ = x/n. Когда один из полиэлектролитов является слабым, то θ оказывается зависимой от рН раствора, как в приведенном ниже примере реакции полиакриловой кислоты с полиоснованием, содержащим азот:

    В подобных случаях ИПЭК могут быть получены постепенным подкислением или подщелачиванием раствора, при этом значения θ и рН связаны зависимостями:

    первая из которых относится к смесям, содержащим слабую поликислоту; вторая - слабое полиоснование, ma, mb - количество молей добавленной кислоты или основания, V - объем реакционной смеси, Ka, Kb - эффективные константы диссоциации поликислоты и полиоснования, со - концентрация одного из полиэлектролитов. Рассчитанные для двух конкретных случаев зависимости α и θ от рН приведены на рис. 7.1.

    Из рис. 7.1 видно, что одинаковое относительное содержание ионизированных звеньев слабого полиэлектролита наблюдается при существенно разных значениях рН в зависимости от того, присутствует или нет более сильный полиэлектролит, образующий с первым ИПЭК (при этом предполагается, что α = θ). Величина ΔpH(θ, α) служит мерой свободной энергии стабилизации ИПЭК ΔGст, обусловленной кооперативным взаимодействием противоположно заряженных звеньев, образующих межцепные солевые связи в ИПЭК:

    где ΔG(α), ΔG(θ) - свободные энергии ионизации слабого полиэлектролита в отсутствие и в присутствии противоположно заряженного иона при данном значении α или θ. Сделанное выше допущение о α = θ предполагает, что каждая ионогенная группа титруемого полиэлектролита, заряжаясь, образует солевую связь с противоположно заряженным полиионом. Такая ситуация имеет место при условии , где m относится к слабому полиэлектролиту.

    Свободная энергия стабилизации ΔGct ИПЭК является мощным термодинамическим фактором, оказывающим большое влияние на протекание ряда физико-химических процессов с участием заряженных частиц в присутствии полиэлектролитов. Так, ионогенный мономер может быть заполимеризован на полиионной матрице при температуре более высокой по сравнению с его предельной температурой полимеризации в том случае, если ее результатом является образование ИПЭК. Другой показательный пример связан с мицеллообразованием ПАВ в присутствии полиионов при концентрациях, намного меньших по сравнению с характерными для них критическими концентрациями мицеллообразования. В данном случае образуются полимерколлоидные комплексы, в которых заряженные звенья полиэлектролита образуют солевые связи с противоположно заряженными «углеводородными хвостами» ПАВ.

    Существуют растворимые и нерастворимые ИПЭК. При Z = 1 и θ → 1 ИПЭК всегда нерастворимы в воде. В этом случае они являются очень эффективными структурообразователями грунтов. В таком качестве ИПЭК были использованы при ликвидации последствий аварии на Чернобыльской АЭС для предотвращения распространения радиоактивной пыли.

    Растворимые ИПЭК могут быть получены двумя путями - за счет незавершенности реакции при Z = 1 и вследствие их нестехиометричности. В последнем случае ИПЭК удерживается в растворе полиэлектролитом, находящимся в избытке, который в соответствии с этой функцией называется лиофилизирующим полиэлектролитом (ЛПЭ). Полиэлектролит, находящийся в недостатке, называется блокирующим (БПЭ). Нестехиометричные ИПЭК можно рассматривать как блок-сополимеры, в которых однотяжевые лиофильные блоки ЛПЭ чередуются с двухтяжевыми гидрофобными блоками ИПЭК ЛПЭ-БПЭ. Подобные комплексы теряют растворимость, когда число звеньев ЛПЭ, вовлеченных в образование солевых связей ИПЭК. достигает 20-50%.

    Кооперативный характер многоточечных связей между полиионами ИПЭК приводит к практической необратимости реакции их образования.Показано, что даже в том случае, когда БПЭ является олигомером, степень диссоциации ИПЭК пренебрежимо мала. Это обстоятельство не мешает, однако, реакциям обмена в ИПЭК. Этот процесс может протекать внутри одной частицы или между разными частицами. К первому случаю относится миграция БПЭ в клубке ЛПЭ. При этом достигается оптимальное термодинамическое соответствие ИПЭК с окружающей средой. Во втором случае имеет место перенос БПЭ с одной цепи ЛПЭ на другую. Если обе цепи ЛПЭ имеют аналогичное строение и химический состав, то этот процесс называется реакцией полиионного обмена, если их строение и (или) состав различен - реакцией полиионного замещения. В соответствии с этой терминологией, учитывающей полимерную природу реагентов, реакция образования ИПЭК определяется как реакция соединения полиионов.

    Кинетика образования ИПЭК, а также их превращения изучались физическими методами, среди которых наиболее информативным оказался метод тушения люминесценции. Упомянутые выше реакции протекают в две стадии. На первой стадии в результате случайных столкновений полиионов образуются их ассоциаты, которые могут рассматриваться как переходное состояние. Константа скорости этой реакции имеет величину порядка 109 л/(моль·с), что близко к величине константы диффузионных столкновений макромолекулярных клубков. На второй стадии первичные ассоциаты превращаются в равновесные частицы с максимально возможным термодинамическим сродством к окружающей среде. Константа скорости второй стадии на 3-5 порядков меньше по сравнению с первой. Общее время реакции полианионов составляет величину порядка нескольких минут. Для них характерна зависимость скорости от ионной силы раствора, химической природы полиионов и противоионов, в также длины первых.

    Повышенный интерес к ИПЭК обусловлен, в первую очередь, тем обстоятельством, что они могут быть образованы полиэлектролитами синтетического и природного происхождения. Это создает широкую перспективу их биомедицинского применения. Среди многих направлений, которые развиваются в настоящее время, следует отметить конструирование каталитических систем фермент - ИПЭК, иммунодиагностических систем, «антагонистов» гепарина, использование ИПЭК нуклеиновых кислот с синтетическими поликатионами для доставки первых в клетки* (* Кабанов А. В., Кабанов В. А. Интсрполиэлектролитные комплексы нуклеиновых кислот как средство доставки генетического материала в клетку // Высокомолек. соед. А. 1994. Т. 36. №2. С. 198.).
    7.2. Сшивание полимеров
    Известно, что сшивка позволяет существенно улучшить свойства полимеров, повысить их термостабильность и устойчивость к действию растворителей. Поэтому реакции сшивки линейных полимеров имеют большое практическое значение.
    7.2.1. Высыхание красок
    Важное место среди полимеров, предназначенных для получения различного рода покрытий (красок), пленок и волокон, занимают полиэфиры. Сшивка полиэфиров осуществляется за счет ненасыщенных связей, специально вводимых для этих целей в основную цепь полимера, как, например в ненасыщенном полиэфире, получаемом из малеинового ангидрида и гликоля:

    Такие кислоты получили название высыхающих масел. Жирные насыщенные карбоновые кислоты, такие как пальмитиновая, лауриновая и др., которые также часто используются в качестве регуляторов молекулярной массы полиэфиров, объединяются в группу невысыхающих масел. Сшивка ненасыщенных и алкидных полиэфиров осуществляется кислородом воздуха, а плотность сшивки регулируется соотношением высыхающих и невысыхающих масел в полимере. На языке лакокрасочной промышленности процесс сшивки лакокрасочного покрытия называется высыханием.

    Сшивка или высыхание (отверждение) старейших из лакокрасочных материалов - масляных красок, основу которых составляют высыхающие масла - олифы и ненасыщенные алкидные смолы, имеет общий механизм. Детали этого механизма несколько различаются в зависимости от того, имеет ли ненасыщенная кислота изолированную двойную связь, как, например, олеиновая
    СН3(СН2)7СН=СН(СН2)7СООН
    или сопряженные двойные связи, как линолевая кислота,

    Сшивающими агентами являются обычно различного рода мономеры, а сшивка происходит в процессе их радикальной сополимеризации с ненасыщенными эфирами.

    Алкиды и алкидные смолы являются полиэфирами, содержащими ненасыщенные связи лишь по концам цепи. Последние вводятся путем участия в реакции поликонденсации жирных ненасыщенных карбоновых кислот - олеиновой, линолевой и др.:
    СН3(СН2)4СН=СН-СНГСН=СН(СН2)7СООН
    Несопряженные двойные связи образуют аллильные гидропероксиды в результате реакций с кислородом воздуха:

    Гидропероксиды претерпевают ряд превращений:

    в результате которых возникают углерод-углеродные и углерод-кислородные сшивки. Для того, чтобы ускорить процесс структурирования, т.е. сшивания макромолекул, добавляют соли жирных кислот, свинца, железа, кобальта.

    Сопряженные двойные связи реагируют с кислородом с образованием циклических пероксидов, распад которых приводит к образованию макрорадикалов, реагирующих с двойными связями других макромолекул с образованием сшивок:

    7.2.2. Вулканизация каучуков
    До настоящего времени сшивка полимеров диенов-1,3 в промышленном масштабе осуществляется путем вулканизации серой. Впервые этот процесс был осуществлен Гудьиром в 1839 г., однако его механизм был установлен значительно позднее.

    Согласно первоначальной точке зрения, реакция серы с каучуком протекает по радикальному механизму. Радикалы возникают вследствие гомолитического разрыва восьмичленных циклов S8 при высокой температуре. Радикальный механизм вулканизации в определенной степени опирается на аналогию - превращение восьмичленной серы в линейную, в ходе которого в реакционной системе были зафиксированы свободные радикалы. В первом случае, однако, они не были обнаружены, более того, как оказалось, типичные инициаторы и ингибиторы радикальной полимеризации не оказывали влияния на скорость вулканизации. Поэтому был предложен альтернативный - ионный механизм вулканизации.

    В пользу ионного механизма вулканизации свидетельствуют многие факторы - ускоряющее действие кислот и оснований, а также полярных растворителей, анализ продуктов модельных реакций олефинов с серой. Считается, что при высокой температуре циклическая сера может претерпевать как гомолитический, так и гетеролитический распад, в последнем случае образуются ионные пары или разделенные ионы:

    Реакция инициирования вулканизации заключается в присоединении сульфониевого иона к ненасыщенной связи макромолекулы:

    Образовавшийся карбкатион быстро превращается в более устойчивый аллильный карбкатион в результате реакции с другой макромолекулой:

    Дальнейшая последовательность реакций с участием серы приводит к возникновению сшивки и регенерации карбкатиона:

    Согласно обоим механизмам - радикальному и ионному - серная вулканизация полимеров диенов-1,3 является цепным процессом. На практике процесс вулканизации ускоряется добавками ускорителей и активаторов вулканизации. В качестве первых применяются органические соединения, наиболее эффективным из которых являются 2-меркаптобензотиозол

    и его производные. В качестве активаторов, усиливающих действие ускорителей, применяются смеси оксидов металлов, например ZnO с жирными кислотами.

    При серной вулканизации натурального каучука максимум прочности (29 МПа) при достаточно большой эластичности (850 %) наблюдается при введении 4-5% серы. Примерно такое количество вводится в каучук при превращении в резину, применяемой в автомобильной промышленности для изготовления шин и камер. При содержании 50 % серы каучук превращается в эбонит - жесткий и прочный материал, практически не способный к деформации.

    В том случае, когда макромолекулы не содержат ненасыщенных групп, их сшивка осуществляется пероксидами, распадающимися при высокой температуре, например дикумил- и ди-трет-бутилпероксидами. Радикалы, возникающие при распаде пероксида, отрывают атомы водорода от макромолекул, срединные радикалы соединяются, образуя сшивку:

    В том случае, когда такой способ оказывается недостаточно эффективным, в полимер вводят путем сополимеризации небольшое количество звеньев, содержащих ненасыщенные звенья. Это легко, например, сделать при полимеризации силанов, содержащих, наряду с насыщенными, ненасыщенные группы:

    Сшивка пероксидами такого сополимера гораздо более эффективна по сравнению с обычным полидиметилсилоксаном, поскольку она осуществляется в основном за счет реакции полимеризации ненасыщенных связей.
    1   ...   25   26   27   28   29   30   31   32   33


    написать администратору сайта