Введение. Физиология. Её место в системе мед образования
Скачать 0.9 Mb.
|
5,6 об%, (мл / дл). Оставшуюся объёмную долю смеси занимает азот и ничтожное количество других инертных редких газов. 14 об%, (мл / дл), а объёмная доля двуокиси углерода FaCO2 30,6; мм рт ст. В альвеолярной газовой смеси объёмная доля кислорода FaO2 4,3%, остальное приходится на азот и очень небольшое количество инертных газов, не участвующих в газообмене. Соответственно, парциальные давления, P: Р(O2) Легочное кровообращение. Важнейшей особенностью организации кровоснабжения легких является ее двухкомпонентный хар-р, поскольку легкие полчают кровь из сосудов малого круга кровообращения и бронхиальных сосудов большого круга. Функц-ое назнач сосудистой системы малого круга кровообращения состоит в обеспечении газообменной функции, тогда как бронхиальные сосуды удовлетворяют собственные метаболические потребности легочной ткани. Капилляры легких образуют на поверхности альвеол очень густую сеть, и при этом на одну альвеолу приходится несколько капилляров. В связи с тем что стенки альвеол и капилляров тесно контактируют, образуя как бы единую альвеолярно-капиллярную мембрану, создаются наиболее благоприятные условия для эффективных вентиляционно-перфузионных взаимоотношений. В условиях функционального покоя у человека капиллярная кровь находится в контакте с альвеолярным воздухом в течение примерно 0,75 с. При тяжелой физической работе продолжительность контакта укорачивается и составляет в среднем 0,35 с. В результате слияния капилляров образуются характерные для легочной сосудистой системы безмышечные посткапиллярные венулы, трансформирующиеся в венулы мышечного типа и далее в легочные вены. Особенностью сосудов венозного отдела являются их тонкостенность и слабая выраженность ГМК. Структурные особенности легочных сосудов, в частности артерий, определяют большую растяжимость сосудистого русла, что создает условия для более низкого сопротивления (приблизительно в 10 раз меньше, чем в системе большого круга кровообращения), и, следовательно, более низкого кровяного давления. В связи с этим система малого круга кровообращения относится к области низкого давления. Давление в легочной артерии составляет в среднем 15—25 мм рт. ст., а в венах — 6—8 мм рт. ст. Градиент давления равен примерно 9—17 мм рт. ст., т.е. значительно меньше, чем в большом круге кровообращения. Несмотря на это, повышение системного АД или же значительное увеличение кровотока (при активной физической работе) существенно не влияет на транс-муральное давление в легочных сосудах из-за их большей растяжимости. Большая растяжимость легочных сосудов определяет еще одну важную функциональную особенность этого региона, заключающуюся в способности депонировать кровь и тем самым предохранять легочную ткань от отека при увеличении минутного объема кровотока. Распределение кровотока в легких характеризуется неравномерностью кровоснабжения верхних и нижних долей, так как низкое внутрисосудистое давление определяет высокую зависимость легочного кровотока от гидростатического давления. Так, в вертикальном положении человека верхушки легкого расположены выше основания легочной артерии, что практически уравнивает АД в верхних долях легких с гидростатическим давлением. По этой причине капилляры верхних долей слабо перфузируются, тогда как в нижних долях благодаря суммированию АД с гидростатическим давлением кровоснабжение намного обильнее. Описанная особенность легочного кровообращения играет важную роль в установлении неодинаковых перфузионно-вентиляционных отношений в различных долях легкого. Интенсивность кровоснабжения легких зависит от циклических изменений плеврального и альвеолярного давления в различные фазы дыхательного цикла. Во время вдоха, когда плевральное и альвеолярное давление уменьшается, происходит пассивное расширение крупных внелегочных и внутрилегочных сосудов, сопротивление сосудистого русла дополнительно снижается и интенсивность кровоснабжения легких в фазу вдоха увеличивается. Регуляция легочного кровообращения. Местная регуляция легочного кровотока в основном представлена метаболическими факторами, ведущая роль среди которых принадлежит РО2 и РСО2. При снижении РО2 и/или повышении РСО2 происходит вазоконстрикция легочных сосудов. Нервная регуляция легочного кровотока осуществляется в основном симпатическими сосудосуживающими волокнами. Система легочного кровообращения выделяется среди всех сосудистых регионов наибольшей функциональной взаимосвязью с регуляцией гемодинамики в большом круге кровообращения. Гуморальная регуляция легочного кровообращения в значительной степени обусловлена влиянием ангиотензина 2, адреналина, норадреналина, ацетилхолина, брадикинина, серотонина, гистамина, простагландинов, которые вызывают свои сосудистые эффекты. ДЫХАНИЕ 1. Значение дыхания для организма. Биомеханика дыхательных движения. Роль инспираторных, вспомогательных и экспираторных мышц. Значение движения ребер и диафрагмы. Пневмография. Дыхание — совокупность последовательно протекающих процессов, обеспечивающих потребление организмом О2 и выделение СО2. Дыхание включает определенную последовательность процессов; 1) внешнее дыхание, обеспечивающее вентиляцию легких; 2) обмен газов между альвеолярным воздухом и кровью; 3) транспорт газов кровью; 4) обмен газов между кровью в капиллярах и тканевой жидкостью; 5) обмен газов между тканевой жидкость и клетками; 6) биологическое окисление в клетках (внутреннее дыхание). Дыхательные мышцы обеспечивают ритмичное увеличение или уменьшение объема грудной полости. Функционально дыхательные мышцы делят на инспираторные (основные и вспомогательные) и экспираторные. Основную инспираторную группу мышц составляют диафрагма, наружные межреберные и внутренние межхрящевые мышцы; вспомогательные мышцы — лестничные, грудиноключично-сосцевидные, трапецевидная, большая и малая грудные мышцы. Экспираторную группу мышц составляют абдоминальные (внутренняя и наружная косые, прямая и поперечная мышцы живота) и внутренние межреберные. Важнейшей мышцей вдоха является диафрагма — куполообразная мышца, разделяющая грудную и брюшную полости. При сокращении диафрагмы органы брюшной полости смещаются вниз и вперед и вертикальные размеры грудной полости возрастают. При этом поднимаются и расходятся ребра, что приводит к увеличению поперечного размера грудной полости. При спокойном дыхании диафрагма является единственной активной инспираторной мышцей и ее купол опускается на 1 — 1,5 см. При глубоком форсированном дыхании увеличивается амплитуда движений диафрагмы (экскурсия может достигать 10 см) и активизируются наружные межреберные и вспомогательные мышцы. Из вспомогательных мышц наиболее значимыми являются лестничные и грудиноключично-сосцевидные мышцы. Наружные межреберные мышцы соединяют соседние ребра. Их волокна ориентированы наклонно вниз и вперед от верхнего к нижнему ребру. При сокращении этих мышц ребра поднимаются и смещаются вперед, что приводит к увеличению объема грудной полости в переднезаднем и боковом направлениях. Паралич межреберных мышц не вызывает серьезных расстройств дыхания, поскольку диафрагма обеспечивает вентиляцию. Лестничные мышцы, сокращаясь во время вдоха, поднимают 2 верхних ребра, а вместе с ними всю грудную клетку. Грудиноключично-сосцевидные мышцы поднимают I ребро и грудину. При спокойном дыхании они практически не задействованы, однако при увеличении легочной вентиляции могут интенсивно работать. Выдох при спокойном дыхании происходит пассивно. Легкие и грудная клетка обладают упругостью, и поэтому после вдоха, когда они активно растягиваются, стремятся вернуться в прежнее положение. При физической нагрузке, когда повышено сопротивление воздухоносных путей, выдох становится активным. Наиболее важными и сильными экспираторными мышцами являются абдоминальные мышцы, которые образуют переднебоковую стенку брюшной полости. При их сокращении повышается внутрибрюшное давление, диафрагма поднимается вверх и объем грудной полости, а следовательно и легких, уменьшается. В активном выдохе участвуют также внутренние межреберные мышцы. При их сокращении ребра опускаются и объем грудной клетки уменьшается. Кроме того, сокращение этих мышц способствует укреплению межреберных промежутков. Пневмография – графич регистрация движения грудной клетки. Определяется ЧДД (12-25 в мин), продолж дых цикла, амплитуда дыхания. 2. Измен давления в легких. Х-ка альвеоляр, плевральн и транспульмональн давления, механизмы их формирования, величина и значение для движения воздуха. Пневмоторакс. Дыхат мышцы измен объем груд клетки и создают градиент давления , необходимый для возник воздушн потока по воздухонос путям. Во время вдоха давлен в альвеолах становит ниже атмосферного, т.е. отрицательным, поэтому в легкие входит воздух из внеш среды. При выдохе давление становит выше атмосфер(положит) и воздух выходит во внеш среду. В конце вдоха и выдоха объем груд полости прекращает изменяться, и при открыт голос щели давление в альвеолах становится = атмосферному. Альвеол давление-это сумма плеврального давления и давления, создаваемого эластич тягой паренхимы легкого. Плевральное давление — давление в герметично замкнутой плевральной полости между висцерал и париетал листками плевры и завис от величин и направления сил, создаваем эластич паренхимой легких и груд стенкой. Плеврал давление ниже атмосфер во время вдоха, а во время выдоха может быть ниже, выше или = атмосфер в зависимости от форсированности воздуха. При спокойн дыхании плеврал давление перед началом вдоха сост – 5 см вод. ст., перед началом выдоха оно понижается еще на 3-4 см вод.ст. Разница между альвеоляр и плеврал давлениями назыв транспульмональным давлением, величина кото в соотношении с атмосферным являе основным фактором, вызывающим движение воздуха в воздухонос путях легких. В области контакта легкого с диафрагмой транспульмональное давление называ трансдиафрагмальным, кот рассчитывают как разницу между внутрибрюшным и плевральным давлением. Пневмоторакс – нарушение герметичности грудной клетки и сообщение плевральной полости с внешней средой. 3. Легочные объемы и емкости. Их хар-ка, величины и факторы ее определяющие. Методы определения. Для характеристики вентиляционной функции легких и ее резервов большое значение имеет величина статических и динамических объемов и емкостей легких. К статическим объемам относятся величины, которые измеряют после завершения дыхательного маневра без ограничения скорости (время) его выполнения. К статическим показателям относятся четыре первичных легочных объема: дыхательный объем (ДО-VТ), резервный объем вдоха (РОвд-IRV), резервный объем выдоха (РОвыд-ERV) и остаточный объем (ОО-RV), а также и емкости: жизненная емкость легких (ЖЕЛ-VС), емкость вдоха (Евд-IС), функциональная остаточная емкость (ФОЕ-FRС) и общая емкость легких (ОЕЛ-ТLС). При спокойном дыхании с каждым дыхательным циклом в легкие поступает объем воздуха, называемый дыхательным (VT). Величина VT у взрослого здорового человека весьма вариабельна; в состоянии покоя VT составляет в среднем около 0,5 л. Максимальный объем воздуха, который дополнительно человек способен вдохнуть после спокойного вдоха, называется резервным объемом вдоха (IRV). Этот показатель для человека среднего возраста и средних антропометрических данных составляет около 1,5—1,8 л. Максимальный объем воздуха, который человек дополнительно может выдохнуть после спокойного выдоха, называется резервным объемом выдоха (ЕRV) и составляет 1,0—1,4 л. Гравитационный фактор оказывает выраженное влияние на этот показатель, поэтому он выше в вертикальном положении, чем в горизонтальном. Остаточный объем (RV) — объем воздуха, который остается в легких после максимального экспираторного усилия; он составляет 1,0—1,5 л. Его объем зависит от эффективности сокращения экспираторных мышц и механических свойств легких. С возрастом RV увеличивается. RV подразделяют на коллапсный (покидает легкое при полном двустороннем пневмотораксе) и минимальный (остается в легочной ткани после пневмоторакса). Жизненная емкость легких (VС) — это объем воздуха, который можно выдохнуть при максимальном экспираторном усилии после максимального вдоха. VС включает в себя VT, IRV и ЕRV. У мужчин среднего возраста VС варьирует в пределах 3,5—5 л, у женщин — 3—4 л. Емкость вдоха (IС) — это сумма VT и IRV. У человека IС составляет 2,0—2,3 л и не зависит от положения тела. Функциональная остаточная емкость (FRC) — объем воздуха в легких после спокойного выдоха — составляет около 2,5 л. FRC называют также конечным экспираторным объемом. При достижении легкими FRC их внутренняя эластическая отдача уравновешивается наружной эластической отдачей грудной клетки, создавая отрицательное плевральное давление. У здоровых взрослых лиц это происходит на уровне примерно 50 %. TLC при давлении в плевральной полости — 5 см вод. ст. FRC является суммой ERV и RV. На величину FRC существенно влияет уровень физической активности человека и положение тела в момент измерения. FRC в горизонтальном положении тела меньше, чем в положении сидя или стоя из-за высокого стояния купола диафрагмы. FRC может уменьшаться, если тело находится под водой. Общая емкость легких (TLC) – объем воздуха, находящийся в легких по завершении максимального вдоха. TLC представляет сумму VC и RV или FRC и IC. Динамические величины характеризуют объемную скорость воздушного потока. Их определяют с учетом времени, затраченного на выполнение дыхательного маневра. К динамическим показателям относятся: объем форсированного выдоха за первую секунду (ОФВ1 — FEV1); форсированная жизненная емкость (ФЖЕЛ — FVC); пиковая объемная (РЕV) скорость выдоха (ПОСвыд. — PEV) и др. Объемы и емкости легких здорового человека определяет ряд факторов: 1) рост, масса тела, возраст, расовая принадлежность, конституциональные особенности человека; 2) эластические свойства легочной ткани и дыхательных путей; 3) сократительные характеристики инспираторных и экспираторных мышц. Для определения легочных объемов и емкостей используются методы спирометрии, спирографии, пневмотахометрии и бодиплетизмографии. Для сопоставимости результатов измерений легочных объемов и емкостей полученные данные должны соотноситься со стандартными условиями: температуры тела 37 °С, атмосферного давления 101 кПа (760 мм рт.ст.), относительной влажности 100 %. Эти стандартные условия обозначают аббревиатурой ВТРS (от англ. Body temperature, pressure, saturated). 4. Альвеолярная вентиляция. Хаар-ка анатомического и альвеолярного мертвого пространства, их влияние на эффективность альвеолярной вентиляции. Газовая смесь, поступившая в легкие при вдохе, распределяется на две неравные по объему и функциональному значению части. Одна из них не принимает участия в газообмене, так как заполняет воздухоносные пути (анатомическое мертвое пространство — Vd) и неперфузируемые кровью альвеолы (альвеолярное мертвое пространство). Сумма анатомического и альвеолярного мертвых пространств называется физиологическим мертвым пространством. У взрослого человека в положении стоя объем мертвого пространства (Vd) составляет 150 мл воздуха, находящегося в основном в воздухоносных путях. Эта часть дыхательного объема участвует в вентиляции дыхательных путей и неперфузируемых альвеол. Отношение Vd к VT составляет 0,33. Другая часть дыхательного объема поступает в респираторный отдел, представленный альвеолярными протоками, альвеолярными мешочками и собственно альвеолами, где принимает участие в газообмене. Эта часть дыхательного объема называется альвеолярным объемом. Она обеспечивает вентиляцию альвеолярного пространства. Газообмен наиболее эффективен, если альвеолярная вентиляция и капиллярная перфузия распределены равномерно по отношению друг к другу. В норме вентиляция обычно преимущественно осуществляется в верхних отделах легких, в то время как перфузия — преимущественно в нижних. Вентиляционно-перфузионное соотношение становится более равномерным при нагрузке. Наиболее важными особенностями альвеолярной вентиляции являются: • интенсивность обновления газового состава, определяемая соотношением альвеолярного объема и альвеолярной вентиляции; • изменения альвеолярного объема, которые могут быть связаны либо с увеличением или уменьшением размера вентилируемых альвеол, либо с изменением количества альвеол, вовлеченных в вентиляцию; • различия внутрилегочных характеристик сопротивления и эластичности, приводящие к асинхронности альвеолярной вентиляции; • поток газов в альвеолу или из нее определяется механическими характеристиками легких и дыхательных путей, а также силами (или давлением), воздействующими на них. Механические характеристики обусловлены главным образом сопротивлением дыхательных путей потоку воздуха и эластическими свойствами легочной паренхимы. Неравномерность альвеолярной вентиляции обусловлена и гравитационным фактором – разницей транспульмонального давления в верхних и нижних отделах грудной клетки. В вертикальном положении в нижних отделах это давление выше примерно на 0,8кПа. 5. Газовый состав атмосферного, альвеолярного и выдыхаемого воздуха. МОД. МВЛ. Состав сухого и чистого атмосферного воздуха везде одинаков. В лесу и в поле, на море и на суше основные газы входят в него в одних и тех же объемных соотношениях: азот — 78%, кислород — 21%, аргон — около 1%. На долю всех прочих составных частей сухого и чистого атмосферного воздуха — углекислого газа, неона, гелия, криптона, водорода, озона, радона и других — приходится в общей сложности не более 0,04%. Однако в естественных условиях воздух, которым мы дышим, не бывает абсолютно сухим. В нем всегда имеется водяной пар, содержание которого меняется в очень широких пределах — от самых ничтожных количеств до 3—4% по объему. Состав (объёмные доли, F ) всего объёма выдыхаемой газовой смеси в среднем следующий: кислород F(O2) |