вышмат. 1. Числоваяпоследовательности и ее предел
Скачать 0.89 Mb.
|
7.Производная. Геометрический и механический смысл производнойПроизво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке). Производная. Рассмотрим некоторую функцию y = f ( x ) в двух точках x0 и x0 + : f ( x0 ) и f ( x0 + ). Здесь через обозначено некоторое малое изменение аргумента, называемое приращением аргумента; соответственно разность между двумя значениями функции: f ( x0 + ) f ( x0 ) называется приращением функции.Производной функции y = f ( x ) в точке x0 называется предел: Если этот предел существует, то функция f ( x ) называется дифференцируемой в точке x0 . Производная функции f ( x ) обозначается так: Геометрический смысл производной. Рассмотрим график функции y = f ( x ): Из рис.1 видно, что для любых двух точек A и B графика функции: где - угол наклона секущей AB. Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точку B, то неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует: производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке.В этом и состоит геометрический смысл производной. Уравнение касательной. Выведем уравнение касательной к графику функции в точке A ( x0 , f ( x0 ) ). В общем случае уравнение прямой с угловым коэффициентом f ’( x0 ) имеет вид: y = f ’( x0 ) · x + b . Чтобы найти b, воспользуемся тем, что касательная проходит через точку A: f ( x0 ) = f ’( x0 ) · x0 + b , отсюда, b = f ( x0 ) – f ’( x0 ) · x0 , и подставляя это выражение вместо b, мы получим уравнение касательной: y = f ( x0 ) + f ’( x0 ) · ( x – x0 ) . Механический смысл производной. Рассмотрим простейший случай: движение материальной точки вдоль координатной оси, причём закон движения задан: координата x движущейся точки – известная функция x ( t ) времени t. В течение интервала времени от t0 до t0 + точка перемещается на расстояние: x ( t0 + ) x ( t0 ) = , а её средняя скорость равна: va = . При 0 значение средней скорости стремится к определённой величине, которая называетсямгновенной скоростью v ( t0 ) материальной точки в момент времени t0 . Но по определению производной мы имеем: отсюда, v ( t0 ) = x’ ( t0 ) , т.e. скорость – это производная координаты по времени. В этом и состоит механический смысл производной. Аналогично, ускорение – это производная скорости по времени: a = v’ ( t ). |