Главная страница

вышмат. 1. Числоваяпоследовательности и ее предел


Скачать 0.89 Mb.
Название1. Числоваяпоследовательности и ее предел
Анкорвышмат.docx
Дата04.05.2017
Размер0.89 Mb.
Формат файлаdocx
Имя файлавышмат.docx
ТипДокументы
#6825
страница5 из 16
1   2   3   4   5   6   7   8   9   ...   16

8.Таблица производных и правила дифференцирования




http://ege-study.ru/wp-content/uploads/2012/08/%d1%82%d0%b0%d0%b1%d0%bb%d0%b8%d1%86%d0%b0-%d0%bf%d1%80%d0%be%d0%b8%d0%b7%d0%b2%d0%be%d0%b4%d0%bd%d1%8b%d1%85.jpg

О том, что такое производная, мы рассказали в статье «Геометрический смысл производной». Если функция задана графиком, её производная в каждой точке равна тангенсу угла наклона касательной к графику функции. А если функция задана формулой — вам помогут таблица производных и правила дифференцирования, то есть правила нахождения производной.

9.Возрастание и убывание функции


Определение возрастающей функции.

Функция y=f(x) возрастает на интервале X, если для любых  и формулавыполняется неравенство формула. Другими словами – большему значению аргумента соответствует большее значение функции.

Определение убывающей функции.

Функция y=f(x) убывает на интервале X, если для любых  и формулавыполняется неравенство формула. Другими словами – большему значению аргумента соответствует меньшее значение функции.

изображение

ЗАМЕЧАНИЕ: если функция определена и непрерывна в концах интервала возрастания или убывания (a;b), то есть при x=a и x=b, то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X.

К примеру, из свойств основных элементарных функций мы знаем, что y=sinx определена и непрерывна для всех действительных значений аргумента. Поэтому, из возрастания функции синуса на интервале формула мы можем утверждать о возрастании на отрезке формула.

Точки экстремума, экстремумы функции.


Точку  называют точкой максимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство формула. Значение функции в точке максимума называютмаксимумом функции и обозначают .

Точку  называют точкой минимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство формула. Значение функции в точке минимума называютминимумом функции и обозначают .

Под окрестностью точки  понимают интервал формула, где  - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума, а значения функции, соответствующие точкам экстремума, называют экстремумами функции.

изображение

Не путайте экстремумы функции с наибольшим и наименьшим значением функции.

изображение

На первом рисунке наибольшее значение функции на отрезке [a;b] достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x=b, которая не является точкой максимума.

Достаточные условия возрастания и убывания функции.


На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.

Вот формулировки признаков возрастания и убывания функции на интервале:

  • если производная функции y=f(x) положительна для любого x из интервала X, то функция возрастает на X;

  • если производная функции y=f(x) отрицательна для любого x из интервала X, то функция убывает на X.

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

  • найти область определения функции;

  • найти производную функции;

  • решить неравенства формула и формула на области определения;

  • к полученным промежуткам добавить граничные точки, в которых функция определена и непрерывна.

Рассмотрим пример нахождения промежутков возрастания и убывания функции для разъяснения алгоритма.

Пример.

Найти промежутки возрастания и убывания функции формула.

Решение.

Первым шагом является нахождение обрасти определения функции. В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, формула.

Переходим к нахождению производной функции:
формула

Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства формула и формула на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2, а знаменатель обращается в ноль при x=0. Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.
формула

Таким образом, формула и формула.

В точке x=2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x=0 функция не определена, поэтому эту точку не включаем в искомые интервалы.

Приводим график функции для сопоставления с ним полученных результатов.

изображение

Ответ:

функция возрастает при формула, убывает на интервале (0;2].
1   2   3   4   5   6   7   8   9   ...   16


написать администратору сайта