БИОСТАТ_Руководство_Студ_ОМ. Анализ медикобиологических данных на основе их графического представления
Скачать 2.14 Mb.
|
ТЕМА: t-критерий Стьюдента для анализа биомедицинских данных Базовые вопросы к теме Цели биостатистики, предмет биостатистики Применение статистического анализа в медицинских исследованиях Понятие случайной величины Генеральная совокупность и выборка Классификация признаков: количественные и качественные признаки Правила построения гистограмм Основные статистические характеристики случайных величин и их интерпретация Информационно-дидактический блок Параметрические критерии для проверки гипотезы о различии (или сходстве) между средними значениями Для проверки гипотез в биометрии возможны 2 вида критериев: параметрические и непараметрические. Первые служат для проверки гипотез о параметрах совокупности, распределенных по известному закону (обычно в биометрии по нормальному закону), вторые — для проверки гипотез независимо от формы распределения совокупностей. Так, при нормальном распределении признака параметрические критерии обладают большей мощностью, чем непараметрические, поэтому, если известно, что сравниваемые выборки извлечены из нормально распределенных совокупностей, предпочтение следует отдавать параметрическим критериям. В случае очень больших отличий распределения признака от нормального закона, при малых объемах выборки, а также для анализа порядковых данных следует применять непараметрические критерии. Работа с преподавателем СЛУЧАЙ 1. Выборки независимы. Наиболее распространенным параметрическим методом оценки различий между сравниваемыми средними значениями независимых выборок является критерий Стьюдента, или t-критерий. Нулевая гипотеза заключается в равенстве генеральных средних и совокупностей, из которых извлечены выборки, или, другими словами, проверяется нулевая гипотеза о принадлежности двух сравниваемых выборок одной и той же генеральной совокупности. Проверяемый t-критерий выражается в виде отношения: где m1, m2 — стандартные ошибки средних значений сравниваемых выборок. Для проверки критерия знак разности средних значений не играет роли, поэтому в формуле для расчета тестовой статистики берется модуль разности. Однако знак разности важен для интерпретации результатов сравнения и заключения о преимуществе одного из сравниваемых методов. В дальнейшем при сравнении параметров в формулах для тестовых статистик мы будем опускать знак модуля. Гипотезу о равенстве средних отвергают, если фактически полученная величина t-критерия превзойдет или окажется равной табличному значению распределение Стьюдента, для принятого уровня значимости и числа степеней свободы f =.n1 + n2 – 2.При этом делается заключение о наличии статистически значимых различий между средними значениями на соответствующем уровне значимости. СЛУЧАЙ 2. Выборки зависимы. Для сравнения двух зависимых выборок или выборок с попарно связанными вариантами проверяют гипотезу о равенстве нулю среднего значения их попарных разностей. Такая задача возникает, когда имеются данные об изменении интересующего признака у каждого пациента. Например, если группа пациентов получала изучаемый метод лечения и у каждого пациента измерялось значение признака до и после лечения. В данном случае предстоит проверить нулевую гипотезу о равенстве нулю изменений этого признака в результате получения терапии. При подобных исследованиях все наблюдения можно представить в виде n-пар измерений (например, до и после) Для каждой пары вычисляется разность di, i=1, n Для полученного ряда вычисляется среднее и среднеквадратичное отклонение Проверка гипотезы производится по таблицам распределения Стьюдента для выбранного уровня значимости и числа степеней свободы f= п — 1, в случае двустороннего теста без учета знака. Нулевая гипотеза отвергается для данного уровня значимости, если вычисленное значение превзойдет соответствующее табличное. Правильное применение t-критерия предполагает нормальное распределение совокупностей, из которых извлечены сравниваемые выборки. Если это условие не выполняется, то более эффективными будут непараметрические критерии. Работа с преподавателем. Случай 1. В группе здоровых людей и больных гепатитом было определено содержание белка в сыворотке крови (Таблица 1). Определить, достоверна ли разница в содержании белка у здоровых людей и больных гепатитом. Представить результаты в графическом виде. Таблица 1.
Решение:
Определение достоверности различия двух зависимых выборочных совокупностей. Случай 2. В группе из 6 больных гипертонией изучалось влияние лекарственного препарата – адельфана, снижающего артериальное давление. В результате опыта получилось 2 вариационных ряда систолического давления: первый – до приема препарата, второй – после приема: Таблица 1.
На какую величину снижается систолическое артериальное давление после приема адельфана? Достоверны ли полученные результаты? Представить результаты в графическом виде. Для наглядности представим данные в следующей таблице: Таблица 2.
Самостоятельная работа: Проверить гипотезу о равенстве двух генеральных средних с использованием критерия Стъюдента. Сформулировать нулевую и альтернативную гипотезы. Сделать выводы на уровне значимости =0,05. Представить данные в графическом виде. Вариант 1. Скорость десневой экссудатации у детей (мл/сутки).
Вариант 2. Калий мочи (г/сутки).
Вариант 3. Содержание адренокортикотропного гормона (мл.ед).
Вариант 4. Свободный гепарин крови.
Вариант 5. Связанный холестерин крови (мг%).
Вариант 6. Скорость нестимулированного слюноотделения у детей (мл/мин).
Вариант 7. Норадреналин мочи (мкг/сутки) при грудной жабе.
Вариант 8. Микрошероховатость поверхности эмали после воздействия кислотой (Со ОЭДФ).
Вариант 9. Микрошероховатость поверхности эмали после воздействия ортофосфорной кислотой.
Вариант 10. Содержание трийодтиронина (мг/мл) при тиреотоксикозе.
Вариант 11. Вес юношей и девушек, кг
Вариант 12. Пульс юношей и девушек, уд\мин
Вариант 13. Влияние диеты на вес, кг
Вариант 14. Влияние пробежки на пульс, уд\мин
Вариант 15. Влияние операции на объем циркулирующей плазмы , мл\кг
|