Главная страница

теория автоматического управления. Билет 1


Скачать 0.65 Mb.
НазваниеБилет 1
Анкортеория автоматического управления
Дата15.09.2019
Размер0.65 Mb.
Формат файлаdocx
Имя файла1-5.docx
ТипДокументы
#86877
страница6 из 12
1   2   3   4   5   6   7   8   9   ...   12

Билет №3:

1)Математическое описание САУ.

Анализ и синтез САУ проводят по дифференциальным или интегродифференциальным уравнениям, определяющим поведение систем в переходном процессе при действии возмущающих сил или после прекращения их действий.

Уравнения называются уравнениями динамики, если они описывают изменения входящих в них переменных во времени. Из уравнений динамики обычно можно получить уравнения статики, если положить все входящие в них производные и воздействия равными нулю или некоторым постоянным величинам. Уравнения статики описывают поведение систем в установившемся режиме.

Обычно САУ разбивают на отдельные элементы и для каждого из них записывают дифференциальное уравнение, которое составляется на основании физических законов, определяющих протекание процесса в изучаемом элементе. Чаще всего исходными являются законы Ньютона, Ома, Гука, Кирхгофа, Ампера, Фарадея, сохранения вещества и энергии, записанные применительно к рассматриваемому явлению.

Для большого диапазона изменения регулируемой величины уравнения обычно нелинейны. Для малых отклонений регулируемой величины пользуются линеаризованными уравнениями.

Нелинейность характеристик обусловлена ограничением мощности, ограничением координат, зазорами, гистерезисом, физическими законами. Связь между отдельными координатами элементов с нелинейными характеристиками описывается нелинейными дифференциальными уравнениями. При составлении уравнений отдельных элементов систем приходится идеализировать их характеристики, т. е. не учитывать некоторые особенности характеристик исследуемых элементов, а также не учитывать отдельные связи, если они не оказывают существенного влияния на работу всей системы. При такой идеализации обычно удаётся упростить дифференциальные уравнения элементов и всей системы и заменить нелинейную связь между координатами линейной связью.

Модель описывает свойства реальной системы в ограниченном диапазоне её функционирования. Поэтому обязательно проведение натурных испытаний проектируемой системы. В системе различают процессы переходные и установившиеся.
Базовые режимы работы САУ:

  1. Равновесные (статические, режим стабилизации);

  2. Динамические:

● установившиеся режимы работы при изменяющемся входном воздействии;
● при малых отклонениях относительно базовых установившихся режимов

работы;

● при больших отклонениях, когда требуется изменение режима функционирования объекта (пуск системы, слежение, перевод системы из одного состояния в другое);

● консервативные периодические движения.

Для упрощения исследований САУ нелинейные дифференциальные уравнения во многих случаях можно приближённо заменить линейными. Процесс преобразования нелинейных уравнений в линейные называют линеаризацией.

Основой возможности линеаризации нелинейных уравнений является выдвинутое И. А. Вышнеградским положение о том, что в течение процесса управления происходят лишь достаточно малые отклонения всех величин от их установившихся значений. Этот метод получил название метода малых отклонений. Математической основой метода малых отклонений является разложение нелинейных функций в ряд Тейлора.


f

u y Обобщённая структурная схема объекта.

ОУ


Пусть дифференциальное уравнение общего вида для трёхкоординатной системы имеет вид
- (нелинейность несущественная)

аналитическая нелинейная функция в области малых приращений.

Если нелинейная функция F и все её производные однозначны и непрерывны, то при малых отклонениях координат она может быть разложена в ряд Тейлора в окрестности произвольно выбранной базовой точки (n+m+k+3)-мерного пространства (для САР эта точка соответствует установившемуся режиму):



(1)

где

так как выбранная точка (y0, u0, 0) – установившийся режим работы, где производные координат равны нулю, для приращений начальные условия будут нулевыми.

Ф – сумма членов ряда Тейлора высшего порядка малости и ими можно пренебречь (для устойчивых САУ отклонения переменных малы, ибо этого требует сама идея работы замкнутой автоматической системы).

Уравнение установившегося режима

(2)

есть уравнение статического равновесия системы.
Для того чтобы получить линеаризованное уравнение первого приближения для системы, необходимо из уравнения возмущённого состояния (1) вычесть уравнение установившегося состояния (2) и отбросить нелинейные члены Ф ряда Тейлора. Опустим знак , считая y, u и  отклонениями от их установившихся значений, и запишем линеаризованное дифференциальное уравнение системы для окрестности точки (y0, u0, 0): (3)

Уравнение (3) - классическая форма дифференциального уравнения.

Из этого дифференциального уравнения можно получить уравнение установившегося режима для приращений переменных (уравнение статики для приращений переменных).

Символическая форма записи дифференциального уравнения имеет вид





Условия линеаризации дифференциального уравнения:

  1. Функция F аналитическая, т. е. имеет непрерывные производные по всем аргументам;

  2. Система автономна, т. е. время t не входит в функцию F явно;

  3. Система стационарна (коэффициенты дифференциального уравнения не изменяются во времени);

Функция F не имеет разрывов непрерывности и неоднозначности по каким-либо из переменных

2)Типовые регуляторы: аналоговый ПИ-регулятор.
По назначению корректирующие устройства классифицируются:

  1. СТАБИЛИЗИРУЮЩИЕ – обеспечивать устойчивость САУ и улучшать их статические и динамические характеристики;

  2. КОМПЕНСИРУЮЩИЕ – уменьшать статические и динамические ошибки при построении САУ по комбинированному принципу;

  3. ФИЛЬТРУЮЩИЕ – повышение помехозащищенности систем, например фильтрация высших гармоник при демодуляции сигнала прямого канала;

  4. СПЕЦИАЛИЗИРОВАННЫЕ – для придания системе особых свойств, позволяющих улучшить показатели качества системы.



Чтобы убрать статическую ошибку в установившемся режиме, в регулятор вводят интегральный канал с коэффициентом усиления , так что

, .



Такой регулятор называется пропорционально – интегральным или
1   2   3   4   5   6   7   8   9   ...   12


написать администратору сайта