Главная страница
Навигация по странице:

  • Абсолютная чувствительность зрения.

  • : Адаптация.

  • Физиология человека. Косицкий. Литература москва Медицина 1985 Для студентов медицинских институтов


    Скачать 7.39 Mb.
    НазваниеЛитература москва Медицина 1985 Для студентов медицинских институтов
    АнкорФизиология человека. Косицкий.doc
    Дата29.01.2017
    Размер7.39 Mb.
    Формат файлаdoc
    Имя файлаФизиология человека. Косицкий.doc
    ТипЛитература
    #964
    страница57 из 71
    1   ...   53   54   55   56   57   58   59   60   ...   71


    Электроретинограмма. Суммарный электрический ответ сетчатки глаза на свет носит название электроретинограммы и может быть зарегистрирован от целого глаза или же непосредственно от сетчатки. Для записи электроретинограммы один электрод помещают на поверхности роговой оболочки, а другой прикладывают к коже лица вблизи глаза или мочке уха.

    На электроретинограмме большинства животных,- регистрируемой при освещении глаза в течение 1—2 с, различают несколько характерных волн (рис. 216). Первая волна а представляет собой небольшое по амллитуде электроотрицательное колебание. Оно переходит в быстро нарастающую и медленно убывающую электроположительную волну Ь, имеющую значительно большую амплитуду. После волны Ь, нередко наблюдается медленная электроположительная волна с. В момент прекращения светового раздражения появляется еще одна электроположительная волна d. Электроретинограмма человека имеет аналогичную форму с тем лишь отличием, что на ней между волнами а и b отмечается кратковременная волна х.

    Волна а отражает возбуждение внутренних сегментов фоторецепторов .(поздний рецепторный потенциал) и горизонтальных клеток. Волна b возникает в результате активации глиальных (мюллеровских) клеток сетчатки ионами калия, выделяющимися при возбуждении биполярных и амакриновых нейронов; волна с — клеток пигментного эпителия, а волна d — горизонтальных клеток.

    Амплитуда всех волн электроретинограммы увеличивается пропорционально логарифму силы света и времени, в течение которого глаз находился в темноте. Только волна d (реакция на выключение) тем больше, чем длительнее действовал свет.

    Электроретинограмма хорошо отражает также такие свойства светового раздражителя, как его цвет, размер и длительность действия. Поскольку на ней в интегральном виде отражена активность практически всех клеточных элементов сетчатки (кроме ганглиозных клеток), этот показатель широко используется в клинике глазных болезней для диагностики и контроля лечения при различных заболеваниях сетчатки.



    Электрическая активность путей и центров зрительного анализатора. Возбуждение ганглиозных клеток сетчатки приводит к,тому, что по их аксонам — волокнам зрительного нерва — в мозг устремляются электрические сигналы. В пределах же самой сетчатки передача информации о действии света происходит безимпульсным путем (распространением и транссинаптической передачей градуальных-потенциалов). Ганглиозная клетка сетчатки — это первый нейрон «классического» типа в прямой цепи передачи информации от фоторецепторов к мозгу.


    449
    Различают три основных типа ганглиозных клеток; отвечающие на включение света (оп-реакция), его выключение (off-реакция) и на то'и другое (on-off-реакция) (рис. 217). Отведение импульсов от одиночного волокна зрительного нерва микроэлектродом при. точечном световом раздражении разных участков сетчатки позволило исследовать рецептивные поля ганглиозных клеток, т. е. ту часть поля рецепторов, на стимуляцию которой нейрон отвечает импульсным разрядом. Оказалось, что в центре сетчатки рецептивные поля маленькие, а на периферии сетчатки они значительно больше по диаметру. Форма их круглая, причем построены эти поля в большей части случаев концентрически: возбудительный центр и тормозная периферическая кольцевая зона или наоборот. Центр

    15 Физиология человека

    Включение. ; Выключение света света















    1 !




    'ЯШ!pip S







    4 jifiufljljlMiiii;







    111ЩВД1Р




    Рис. 217. Импульсация двух ганглиозных клеток сетчатки (а и б) и их концентрические рецептивные поля (РП).

    Тормозные зоны рецептивных полей заштрихованы. Показаны реакции на включение (1 и 4) и выключение (2 и 3) света при стимуляции световым пятном центра РП (L и 3). и его периферии (2 и 4).




    рецептивного поля обладает максимальной световой чувствительностью, а на краях его чувствительность снижается. При увеличении размера светового пятнышка, вспыхивающего в пределах центра рецептивного поля, величина ответа ганглиозной клетки увеличивается, (пространственная суммация). Возбуждение двумя стимулами близко расположенных ганглиозных клеток приводит к их взаимному торможению: ответы каждой клетки делаются меньше, чем при одиночном раздражении. В основе этого эффекта, обеспечиваемого амакриновыми клетками сетчатки, лежит горизонтальное или боковое торможе- ние. Рецептивные поля соседних ганглиозных клеток частично перекрываются, так что одни и ге же рецепторы могут вносить вклад в генерацию ответов нескольких нейронов. Благодаря круглой форме рецептивные поля ганглиозных клеток сетчатки производят так называемое точечное описание сетчаточного изображения: оно отображается очень тонкой мозаикой, состоящей из точек — возбужденных нейронов.





    Такой же характер имеет и картина возбуждения в нейронных слоях подкоркового зрительного центра — наружного коленчатого тела, куда приходят волокна из сетчатки. Рецептивные поля этих нейронов также круглые, но меньшего размера, чем в сетчатке. Фазический характер их ответов также выражен больше, чем в сетчатке. На уровне наружного коленчатого тела происходит взаимодействие афферентных сигналов, идущих из сетчатки, с эфферентными сигналами из коры, а также из слуховой и других сенсорных
    Рис. 218. Вызванные потенциалы. (ВП) разных уровней зрительной системы кошки.

    С — ВП сетчатки (ЭРГ); ОТ — ВП оптического тракта; НКТ — ВП наружного коленчатого тела и ЗК — ВП первичной проекционной области зрительной коры у наркотизированной кошки.

    систем, опосредованными нейронами ретикулярной формации. j . . ннт

    Эти взаимодействия происходят в сложных синаптических структурах наружного коленчатого тела, куда, помимо перечне- зц

    ленных волокон, подходят также отростки клеток, осуществляющих торможение. Все эти взаимодействия обеспечивают дополнительную обработку зрительной информации— < . выделение в ней наиболее существенных компонентов и процессы избирательного зрительного внимания. Считается также, что в наружном коленчатом теле происходит важное для глубинного стереоскопического зрения послойное разделение сигналов, приходящих из правой и левой сетчаток.

    .Для оценки характера и направленности процессов переработки зрительных сигналов на разных уровнях анализатора используют регистрацию суммарных вызванных потенциалов, которые у животных можно одновременно; исследовать во всех отделах системы, а у человека — в зрительной коре большого мозга (рис. 218). Сравнение вызванных ответов в сетчатке глаза на электроретинограмме и в коре позволяет во многих случаях провести точный дифференциальный диагноз и установить локализацию патологического процесса в зрительной системе человека.

    Разряды нейронов наружного коленчатого тела по их аксонам поступают в затылочную часть коры головного мозга, где расположена первичная проекционная область зрения. Здесь у приматов и человека происходит значительно более специализированная, и сложная, чем в сетчатке и наружном коленчатом теле, переработка информации. Нейроны зрительной коры большого мозга имеют не круглые, вытянутые (по горизонтали, вертикали или в одном из косых направлений) рецептивные поля небольшого размера. Благодаря этому они оказались способными осуществлять так называемые детекторные функции: выделять из всего изображения лишь отдельные его фрагменты той или иной ориентации и расположения и избирательно на них реагировать. Кроме того, разные клетки зрительной коры различаются по тонкости анализа изображений; одни из них, имеющие простые рецептивные поля, реагируют лишь на строго локальные и маленькие линии, другие (со сложными рецептивными полями) отвечают на такие изображения в большей, чем простые нейроны, части поля зрения.

    В каждом небольшом участке зрительной коры по ее глубине сконцентрированы нейроны с одинаковой ориентацией и локализацией рецептивных полей в поле зрения. Они образуют колонку нейронов, проходящую вертикально через все слои коры. Колонка — пример функционального объединения корковых нейронов, осуществляющих сходную взаимодополняющую функцию. " •

    Роль движения глаз для зрения

    ■<■ При рассматривании любых предметов важную роль играют движения глаз. Движения тлаза осуществляются при помощи 6 мышц, прикрепленных к глазному яблоку несколько кпереди от его экватора. Это 2 косые и 4 прямые мышцы — наружная, внутренняя, верхняя и нижняя (рис. 219). Из них только наружная мышца поворачивает глаз; прямо наружу, а внутренняя — прямо внутрь. Верхняя же и нижняя прямые мышцы поворачивают глаз не только вверх или вниз, но и немного внутрь, поэтому, чтобы повернуть глаз прямо вверх или вниз, к сокращению прямых мышц должно присоединяться сокращение косых мышц.




    Движение глаз совершается одновременно и содружественно. Рассматривая более близкие предметы, необходимо сводить, а рассматривая более, далекие предметы — раз

    водить зрительные оси. Сведение осей при рассматривании близких предметов, осуществляемое напряжением обеих внутренних прямых мышц, называется конвергенцией. Разведение зрительных осей при помощи наружных прямых мышц называется дивергенцией.

    Важная роль движений глаза в процессе зрения прежде всего определяется тем., что для непрерывного получения зрительной информации необходимо, движение изображения по сетчатке. Как показали электрофизиологические исследования, импульсы в зрительном нерве возникают лишь в момент включения и выключения светового изображения. При непрерывном воздействии света на зрительные рецепторы им'пульсация в соответствующих волокнах зрительного нерва быстро прекращается и зрительное ощущение при неподвижных глазах и объектах исчезает. Если на роговице глаза укрепить маленькую присоску с источником светового раздражения, смещающимся вместе с глазом при его движении, так, чтобы раздражение действовало все время на одни и те же элементы сетчатки, то в этом случае человек будет видеть свет только в течение 1—2 с после его включения. ^ . .

    С помощью этого метода обнаружено, что глаз при рассматривании любого предмета производит не ощущаемые человеком непрерывные скачки. Вследствие этого изображе- . ние на сетчатке непрерывно смещается с одной точки на другую, раздражая тем самым новые фоторецепторы и вызывая вновь импульсацию в ганглиозных клетках и отходящих от них нервных волокнах. Продолжительность каждого;отдельного скачка равна сотым долям секунды, а размер его не превышает 20°. Скорость скачка колеблется от 200° до 400° в секунду. Длительность интервалов между отдельными скачками, т. е. продолжительность фиксации взора на рассматриваемом предмете или светящейся точке, составляет в среднем 0,2—0,5 с, но может быть и больше. Чем сложнее объект, который рассматривает глаз, тем сложнее кривая его движения. Глаз человека как бы ощупывает контуры изображения, задерживаясь и возвращаясь к тем участкам, которые по тем или иным причинам привлекают особое внимание. Таким образом, человек получает более подробную информацию о деталях изображения.

    Кромё скачков, глаз непрерывно мелко дрожит и дрейфует (медленно, смещается с точки фиксации взора). Эти движения также играют роль в дезадаптации зрительных Нейронов. ■ _

    Световая чувствительность

    Абсолютная чувствительность зрения. Для того чтобы возникло зрительное ощущение, источник света должен обладать некоторой определенной энергией. Величина пороговой энергии при наиболее благоприятных обстоятельствах крайне мала,-составляя

    мо 17 1 • ю

    вт (ыо 10 1-ю-11 эрг/с).




    Рис. 219.. Глазные мышцы. .. ,.

    1 — верхняя косая; 2 — поднимающая веко; 3 — верхняя прямая; 4 — наружная прямая; 5 — нижняя прямая; б—нижняя косая; 7 — зрительный нерв.
    Минимальное число квантов света, необходимое для возникновения возбуждения в глазу, находящемся в темноте, колеблется от 8 до 47. Исходя из того,' что при освещении сетчатки свет всегда практически действует не на один, а на группу рецепторов, считают, что одна палочка может быть возбуждена всего 1 квантом света. Таким образом, чувствительность рецепторов сетчатки при наиболее благоприятных условиях световосприятия (при максимальной адаптации глаза ктемноте) равна физически предельной чувствите- .льности.
    : Адаптация. Одиночные палочки и колбочки сетчатки различаются по световой чувст- вительности незначительно. Однако число фоторецепторов, посылающих сигналы на одну ганглиозную клетку, в центре и на периферии сетчатки различно. Число колбочек в центральном рецептивном поле примерно в 100 раз меньше количества палочек в периферическом поле. Соответственно и чувствительность палочковой системы на 2 порядка выше колбочковой системы.

    При переходе от темноты к свету наступает временное ослепление. Постепенно чувствительность глаза снижается. Это приспособление зрительной системы,к условиям яркой освещенности называется световой адаптацией. Обратное явление наблюдается, когда из светлого помещения, в котором чувствительность сетчатки глаза к свету сильно понижена, человек переходит в темное помещение: В первое время он вследствие пониженной возбудимости фоторецепторов И зрительных нейронов ничего не видит. Постепенно'начинают выявляться контуры предметов, а затем различаться и их детали, так как чувствительность фоторецепторов и зрительных нейронов в темноте постепенно повышается. Это повышение чувствительности зрения, обеспечивающее приспособление его к условиям малой освещенности, называют темновой адаптацией.

    Повышение световой чувствительности во время пребывания в темноте происходит неравномерно. В первые 10 мин чувствительность глаза увеличивается в 50—80 раз, а затем в течение часа — во много десятков тысяч раз. Важную роль в этом процессе играет восстановление зрительных пигментов. Йодопсин колбочек в темноте восстанавливается быстрее родопсина палочек, поэтому в первые минуты пребывания в темноте адаптация зависит от процессов, протекающих в колбочках. Этот первый период адаптации не вызывает больших изменений чувствительности глаза в целом, так как абсолютная чувствительность колбочкового аппарата невелика. Следующий период адаптации связан с восстановлением родопсина. Этот период протекает медленно и завершается только к концу первого часа пребывания в темноте. Восстановление родопсина сопровождается резким повышением чувствительности палочек сетчатки к свету. После длительного пребывания в темноте она становится в 100 000—200'000 раз больше, чем была в условиях яркого освещения. Так как при длительном пребывании в темноте максимально чувствительными становятся палочки, то слабо освещенные предметы видны лишь тогда, когда они не находятся в центре поля зрения, т. е. когда их изображения падают на периферические части сетчатки. Если же смотреть на тусклое изображение прямо, оно становится невидимым. Явления адаптации зависят от расщепления и ресинтеза фоточувствительных пигментов и от процессов, происходящих в нервных элементах сетчатки.

    Существенную роль играет изменение (переключение) связей между элементами сетчатки. Как установлено, в темноте площадь возбудительного центра рецептивного поля ганглиозной клетки увеличивается вследствие ослабления или снятия кольцевого торможения. При этом к одной биполярной клетке подключено большое число фоторецепторов и большее их число конвергирует на ганглиозную клетку. Вследствие этого при очень слабом фоновом освещении и в темноте вследствие пространственной суммации возбуждающий постсинаптический потенциал увеличивается^ а порог реакций на свет ганглиозных. клеток снижается.

    • Зависимость чувствительности глаза от влияний ЦНС доказана рядом физиологических экспериментов. Раздражение некоторых участков ретикулярной формации ствола мозга повышает частоту вызванных световой вспышкой импульсов в волокнах зрительного нерва.

    Влияние ЦНС на адаптацию сетчатки к свету иллюстрируется наблюдениями, в которых установлено, что освещение одного глаза приводит к резкому понижению чувствительности к свету другого, неосвещенного глаза. На чувствительность к свету могут оказывать влияние также звуковые, обонятельные и вкусовые сигналы.

    Если, действие света на адаптированный к темноте глаз сочетать с каким-нибудь индифферентным раздражителем, например звуком звонка, то после ряда сочетаний однО включение звонка вызывает такое же изменение чувствительности сетчатки, какое раньше наблюдалось лишь при включении светВ. Этот опыт показывает, что процессы

    адаптации могутрегулироваться уеловиорефлекторным путем, т. е. они подчинены контролирующему влиянию коры головного мозга.

    На процессы адаптации сетчатки влияет также симпатическая вегетативная нервная :истема. Одностороннее удаление у человека шейных симпатических ганглиев (при хирургическом лечении определенных заболеваний) вызывает понижение скорости тём- ювой адаптации десимпатизированного глаза. Введение адреналина дает противо- юложный эффект.

    Контрастная чувствительность

    Взаимное торможение зрительных нейронов лежит в основе яркостного светового юнтраста. Примером его может служить то, что серая полоска бумаги, лежащая на свет- юм фоне, кажется темнее такой же полоски бумаги, лежащей на темном фоне. Светлый |>он возбуждает большую часть нейронов сетчатки, а их возбуждение оказывает тормозя- цее влияние на клетки, возбуждаемые сигналами от рецепторов, на. которые проеци^ )уется бумажная полоска. Поэтому последняя, находясь на ярко освещенном фоне, вызывает более слабое возбуждение и кажется темной.
    1   ...   53   54   55   56   57   58   59   60   ...   71


    написать администратору сайта