Вариант № 11 Предположим, что 15 студентов могут явиться для сдачи зачета в один из трех дней, указанных им. а) Сколькими способами могут распределиться студенты по дням явки на зачет? б) Сколько будет способов распределиться, если в каждый день будет приходить равное число студентов (считаем, что каждый сдаёт зачет один раз)?
В партии 10 деталей, из них 7 стандартных. Найти вероятность того, что среди 6 взятых наудачу деталей 4 стандартных.
Два стрелка независимо друг от друга стреляют по мишени, причем каждый делает по два выстрела. Для первого стрелка вероятность попадания в цель при одном выстреле равна 0,7, для второго – 0,9. Найти вероятность того, что мишень будет поражена только два раза.
Наудачу взяты 2 положительных числа Х и У, каждое из которых не превышает единицы. Найти вероятность того, что сумма Х+У не превышает единицы, а произведение ХУ не меньше 0,09.
Два автомата производят детали, которые поступают на общий конвейер. Вероятность получения нестандартной детали на первом автомате равна 0,06, на втором – 0,09. Производительность второго автомата вдвое больше, чем первого. Найти вероятность того, что наудачу взятая с конвейера деталь будет нестандартной.
Принимая одинаково вероятным рождение мальчика и девочки, найти вероятность того, что среди 4500 новорожденных будет 2300 мальчиков.
Вероятность выигрыша в лотерее на 1 билет равна 0,4. Куплено 12 билетов. Найти наивероятнейшее число выигрышных билетов и соответствующую вероятность.
Вероятность поражения мишени при одном выстреле равна р=0,8. Сколько нужно произвести выстрелов, чтобы с вероятностью 0,9127 отклонение относительной частоты попадания от вероятности р по абсолютной величине не превзошло 0,05?
Вероятность сбоя в работе телефонной станции при каждом вызове равна 0,01. Определить вероятность того, что среди 200 поступивших вызовов имеется 8 сбоев.
Производится последовательно испытания четырех приборов на надежность. Каждый следующий прибор испытывается только в том случае, если предыдущий оказался ненадежным. Построить ряд распределения числа испытанных приборов, если вероятность выдержать испытание для каждого прибора равна 0,9. Найти математическое ожидание, дисперсию и функцию распределения этой случайной величины.
Случайная величина Х задана своей плотностью распределения:
Найти параметр С, функцию распределения случайной величины F(х), математическое ожидание, дисперсию, среднее квадратическое отклонение, вероятность попадания этой случайной величины в интервал (/4;/2). Построить графики функций f(x), F(x).
Независимые случайные величины Х и У заданы следующими законами:
Х
| -2
| -1
|
| У
| 0
| 1
| 2
| Р
| 0,3
| 0,7
|
| Р
| 0,2
| 0,6
| 0,2
| Составьте законы распределения случайных величин Х+У и Х-У и найдите их математическое ожидание и дисперсию.
Используя неравенство Чебышева, оценить вероятность того, что случайная величина с дисперсией 0,0324 отклонится от своего математического ожидания менее, чем на 0,018.
Двумерная дискретная случайная величина (Х,У) задана таблицей. Найти ее ковариацию, коэффициент корреляции и сделать вывод о зависимости случайных величин Х и У.
х у
| 1
| 2
| 3
| 3
| 0,3
| 0,01
| 0,01
| 5
| 0,2
| 0,03
| 0,01
| 7,1
| 0,05
| 0,29
| 0,01
| 11
| 0,01
| 0,04
| 0,04
|
|