Главная страница
Навигация по странице:

  • х у -1 2 3

  • Методические указания и индивидуальные задания для выполнения типового расчета Хабаровск Издательство двгупс 2007 удк 519. 2 (075. 8)


    Скачать 0.88 Mb.
    НазваниеМетодические указания и индивидуальные задания для выполнения типового расчета Хабаровск Издательство двгупс 2007 удк 519. 2 (075. 8)
    АнкорGamaley.doc
    Дата04.05.2017
    Размер0.88 Mb.
    Формат файлаdoc
    Имя файлаGamaley.doc
    ТипМетодические указания
    #6983
    страница14 из 33
    1   ...   10   11   12   13   14   15   16   17   ...   33

    Вариант № 13


    1. Автомобильные номера состоят из одной, двух или трех букв и трех цифр. Найти общее число номеров. Сколько всего номеров, в которых все буквы и цифры различны?

    2. Из колоды карт наудачу вынимают три. Найти вероятность того, что это тройка, семерка, туз.

    3. Три охотника попадают в летящую утку с вероятностями соответственно равными 2/3, 3/4 и 1/4. Они одновременно стреляют по пролетающей утке. Какова вероятность того, что утка будет подбита?

    4. Наудачу взяты 2 положительных числа Х и У, каждое из которых не превышает единицы. Найти вероятность того, что сумма Х+У не превышает единицы, а произведение ХУ не меньше 0,07.

    5. В первой коробке содержится 20 радиоламп, 18 из них стандартные, во второй коробке – 10 радиоламп, из них 9 стандартных. Из второй коробки взята наугад одна лампа и переложена в первую коробку, из которой затем наугад берется одна лампа. Найти вероятность того, что эта лампа будет стандартной.

    6. Вероятность появления некоторого события в каждом из независимых испытаний равна 0,6. Найти вероятность того, что это событие наступит ровно 60 раз в 100 испытаниях.

    7. Вероятность выигрыша в лотерее на 1 билет равна 0,5. Куплено
      12 билетов. Найти наивероятнейшее число выигрышных билетов и соответствующую вероятность.

    8. Вероятность поражения мишени при одном выстреле равна р=0,6. Сколько нужно произвести выстрелов, чтобы с вероятностью 0,909 отклонение относительной частоты попадания от вероятности р по абсолютной величине не превзошло 0,04?

    9. Вероятность сбоя в работе телефонной станции при каждом вызове равна 0,02. Определить вероятность того, что среди 200 поступивших вызовов имеется 8 сбоев.

    10. По пути следования автомобиля имеется 4 светофора. Каждый из них с вероятностью 0,6 разрешает автомобилю дальнейшее движение. Составить закон распределения числа светофоров, пройденных автомобилем до первой остановки. Найти математическое ожидание, дисперсию и функцию распределения этой случайной величины.

    11. Случайная величина Х задана своей плотностью распределения:



    Найти параметр С, функцию распределения случайной величины F(x), математическое ожидание, дисперсию, среднее квадратическое отклонение, вероятность попадания этой случайной величины в интервал (p/3;2p/3). Построить графики функций f(x), F(x).

    1. Независимые случайные величины Х и У заданы следующими законами:



    Х

    -5

    0

    1

    2




    У

    1

    7

    10

    Р

    0,3

    0,3

    0,2

    0,2




    Р

    0,4

    0,5

    0,1

    Составьте законы распределения случайных величин Х+У и Х-У и найдите их математическое ожидание и дисперсию.

    1. Используя неравенство Чебышева, оценить вероятность того, что случайная величина с дисперсией 0,0342 отклонится от своего математического ожидания менее, чем на 0,04.

    2. Двумерная дискретная случайная величина (Х,У) задана таблицей. Найти ее ковариацию, коэффициент корреляции и сделать вывод о зависимости случайных величин Х и У.



    х у

    -1

    2

    3

    1

    0,27

    0,01

    0,02

    7

    0,03

    0,04

    0,01

    18

    0,01

    0,03

    0,02

    25

    0,01

    0,03

    0,5


    1   ...   10   11   12   13   14   15   16   17   ...   33


    написать администратору сайта