Программа блока гетерофункциональные углеводороды
Скачать 6.9 Mb.
|
Химические свойства оксикарбоновых кислот. Оксикислоты, благодаря наличию спиртовой группы, реагируют не только, как кислоты, но и как спирты; гидроксильная группа в этих соединениях может быть замещена галогеном или ацилирована. Некоторые реакции этих кислот характерны для определенного положения гидроксильной группы по отношению к карбоксилу. Если OН находится близко к СООН, то кислотные свойства усиливаются, и на оборот, чем ОН дальше от группы СООН, тем больше усиливаются основные свойства и ослабевают кислотные.
Характерным отличием β-оксикислот от -оксикислот является легкость, с которой они теряют элементы воды, превращаясь при этом в ненасыщенные кислоты. Так, например, β-оксимасляная кислота при перегонке с 50 % серной кислотой превращается в кротоновую кислоту, а β-оксивалериановая кислота при перегонке или при нагревании в щелочном растворе образует смесь ненасыщенных кислот. β-Оксикислоты не способны к образованию лактонов. 1. Нагревание β-оксикислот c разбавленными растворами серной или соляной кислот:
3.1 Образование лактонов. При выделении свободных γ-оксикислот из их солей, они более или менее легко превращаются в соответственные лактоны: 1.3 Реакции нуклеофильного замещения α-галогенкарбоновых кислот. Галоген в α-галогенкарбоновых кислотах легко замещается под действием различных нуклеофильных агентов. В результате этих реакций из α-галогенокарбоновых кислот получают α-гидрокси-, α-амино-, α-нитро-, α-циано- и другие α-замещенные карбоновые кислоты. Реакции оптически активных α-галогенкарбоновых кислот с сильными нуклеофильными реагентами протекают по механизму SN2 и сопровождаются обращением конфигурации. α-Галогензамещенные кислоты реагируют и со слабыми нуклеофильными реагентами, причем особый интерес представляет нуклеофильное замещение, протекающее в слабощелочной среде при действии влажного оксида серебра. Если в этих условиях в реакцию вступает кислота с хиральным α-С-атомом, то ее конфигурация в ходе реакции сохраняется: А) Реакции карбоксильной группы
.
Б) Реакции гидроксильной группы
Течение процессов становится ясным при взгляде на формулы, а еще лучше – на модели. Однако только окисление по Вагнеру может служить методом отличия цис-изомеров от транс-изомеров по оптической деятельности продукта присоединения (конечно, после разделения рацемата на антиподы) или не деятельности и не расщепления продукта реакции на антиподы. Другие присоединения по ϭ-связи, например присоединение молекулы брома, проходят, наоборот, в цис-транс-положение. Чтобы понять это, необходимо познакомиться с так называемым валъденовским обращением (или оптической инверсией, 1896 г.).
Согласно гипотезе Хьюза и Уинстейна реакция протекает с двойным обращением: Реакции бимолекулярного нуклеофильного замещения у неасимметрического предельного углеродного атома, конечно, проходят по этому же типу: с атакой нуклеофильного заместителя с противоположной стороны от замещаемого атома, выплощением в переходном состоянии остальных групп, связанных с углеродом, и выворачиванием их в конечном продукте: Вальденовское обращение является правилом для реакций нуклеофильного замещения, протекающих как реакции второго порядка (SN2). Единственное исключение – это реакции «с участием соседнего атома», подобные приведенной выше реакции с промежуточной циклизацией в лактон. Однако это является исключением лишь в том смысле, что изолируемый конечный продукт реакции имеет ту же конфигурацию, что исходный. По существу, эти реакции протекают с двойным вальденовским обращением и, значит, являются не исключением, а подтверждением общего правила. Реакции нуклеофильного замещения первого порядка (SN1) протекают с предварительной диссоциацией исходного соединения на катион и анион: и в принципе должны иметь результатом рацемизацию, так как катион должен приобрести плоскую конфигурацию, и нуклеофил, заменяющий X, может атаковать его как справа, так и слева. Фактически рацемизация иногда бывает частичной, поскольку катион не всегда успевает до атаки выплощиться, а анион X не всегда успевает отойти достаточно далеко и экранирует одну сторону плоскости (иногда в экранировании принимает участие и растворитель.) Оксикислоты в природе. α-гидроксикарбоновые кислоты широко распространены в природе, причем встречаются в природных источниках только в виде L-элементов. Многие алифатические оксикислоты имеют природное происхождение и встречаются в различных растениях, а также участвуют в обменных процессах живого организма. Гликолевая кислота встречается в свекле и винограде, молочная кислота, как уже отмечалось выше, является продуктом жизнедеятельности некоторых бактерий, например, обеспечивающих молочнокислое брожение молока и многих овощей при консервировании, квашении капусты и засолке огурцов. Молочная кислота является естественным консервантом, и се накапливание предохраняет продукты от дальнейшего разложения. В организме человека D-молочная кислота образуется в мышцах при физической нагрузке в результате расщепления глюкозы через стадию образования простейшей кетокислоты - пировиноградной кислоты, и се повышенная концентрация воспринимается как мышечная усталость. Яблочная кислота содержится в недозрелых яблоках, рябине, клюкве и многих других плодах. Там же находится и D-винная кислота, которая в виде калиевой соли выпадает в осадок при брожении вина, откуда се и получают. Много лимонной кислоты, естественно, содержится в лимонах, однако поскольку в нашей стране лимоны не растут, то ее выделяют из махорки после предварительного извлечения никотина, а также из зеленой массы хлопчатника. Салициловая кислота известна главным образом как предшественник ацетилсалициловой кислоты – аспирина. Метилсалицилат и салол также являются лекарственными препаратами. Широко распространены в природе полиоксибензойиые кислоты, которые содержатся в виде гликозидов во многих растениях: протокатеховая кислота (1) и ее производные – ванилиновая (2), изованилиновая (3) кислоты. Из триоксибензойных кислот наибольшее значение имеет галловая кислота, которая в виде производных широко распространена в природе, в частности она находится в коре дуба, гранатового дерева, листьях чая и чернильных орешках – наростах на тканях растений, образующихся в результате некоторых заболеваний, вызываемых паразитами. Ранее из чернильных орешков, содержащих производные галловой кислоты, изготавливали чернила. Соли оксикислот. входящих в состав чернильных орешков, с двухвалентным железом, неокрашены и растворимы в воде. На воздухе они легко окисляются в производные трехвалентного железа, имеющие черный цвет и нерастворимые в воде. Реакция окисления идет во времени, и для того чтобы чернила были видны на бумаге сразу после нанесения, в них добавляли краситель синего цвета. Другое название чернильных орешков – дубильные орешки – обусловлено тем, что из них извлекают таннин – вещество, обладающее дубильными свойствами, то есть способностью превращать шкуру животного в кожу. Процесс дубления основан на сшивке белковых цепей в трехмерную структуру, обеспечивающую высокую прочность кожи. Применение оксикислот. Оксикислоты широко распространены в растительном мире. Гликолевая кислота встречается во многих растениях (свекла, виноград). Молочная кислота является продуктом жизнедеятельности ряда бактерий. Она с незапамятных времен используется как консервирующее и предохраняющее от гниения вещество. Кислое молоко, простокваша, кефир, варенец – продукты молочнокислого брожения молока: молочный сахар – лактоза превращается в молочную кислоту, и она свертывает, «створаживает» белок (казеин молока). Приготовление кислой капусты, моченых яблок, солка огурцов, помидоров, арбузов и т. д. – это все процессы молочнокислого брожения сахаров, содержащихся в этих овощах и плодах. Накапливающаяся молочная кислота обеспечивает сохранность заготовленных овощей. Силос – продукт молочнокислого брожения ботвы и зелени. Все сказанное относится к L- и D-молочным кислотам. В мышцах содержится мясомолочная кислота, которая образуется из глюкозы подобным образом и накапливается во время работы мышцы. Ее предшественником является простейшая кетокислота пировиноградная, восстанавливающаяся в молочную. Яблочная кислота найдена в рябине, незрелых яблоках, листьях махорки и многих других плодах. Яблочную кислоту используют в органическом синтезе и медицине. Соли ее называют малаты. Лимонная кислота находится во многих растениях, в том числе в плодах лимона, откуда и добывается. У нас эту кислоту добывают из махорки после извлечения никотина, а также из ботвы хлопчатника (А.С Садыков). Ее получают также особым лимоннокислым брожением сахаров (глюкозы, мальтозы, патоки) с помощью цитромицетов. Все эти оксикислоты безвредны для человека и многие их них (молочную, винную, лимонную) применяют в кулинарии и для изготовления напитков. Лимонная кислота распространена в природе (лимонный сок, табачные листья). Лимонную кислоту применяют в пищевой промышленности и фармакологии. Сложные эфиры лимонной кислоты используют в качестве пластификаторов. Ее соли называют цитраты. Салициловая кислотавстречается в природных продуктах, в основном в виде метилового эфира. Синтетически получают из фенола. Соли ее – салицилаты. Салициловую кислоту и ее производные используют в медицине, например ацетилсалициловою (аспирин), фениловый эфир салициловой кислоты (салол). Галловая кислота содержится в природных продуктах (дубильных веществах, танине), из которых ее и получают. Водные растворы дубильных веществ используют для денатурации белков (главным образом при обработке кожевенного сырья). Дубильные вещества содержатся в чернильных (дубильных) орешках, листьях чая и в дубовой коре. Главной составной частью дубильных веществ являются танины. Некоторые танины представляют собой гликозиды галловой кислоты. Галловую кислоту используют для синтеза красителей, для получения пирогаллола и в качестве аналитического реагента, а так же в качестве консерванта для многих пищевых продуктов (жиры, молочные продукты, рыба). Обычно для консервации используют соединения галловой кислоты, например гликозиды. 4. ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ Гетероциклическими соединениями называют соединения, содержащие циклы, в которых имеется один или несколько гетероатомов – N, О, S или другие атомы, способные образовывать не менее двух ковалентных связей.
|