лод. Программа курса Методика преподавания математики делит его на две части Общая методика
Скачать 7.21 Mb.
|
§ 7. АНАЛИЗ И СИНТЕЗ 7.1. Анализ — логический прием, метод исследования, состоящий в том, что изучаемый объект мысленно (или практически ) расчленяется на составные элементы (признаки, свойства, отношения), каждый из которых исследуется в отдельности как часть расчлененного целого. Синтез — логический прием, с помощью которого отдельные элементы соединяются в целое. Очень часто умение мыслить связывают с умением анализировать. Это вполне правомерно, так как вывод следствий, выражающих новые свойства изучаемого объекта, очень часто требует анализа того, что уже известно о нем. В математике, чаще всего, под анализом понимают рассуждение в «обратном направлении», т. е. от неизвестного, от того, что необходимо найти, к известному, к тому, что уже найдено или дано, от того, что необходимо доказать, к тому, что уже доказано или принято за истинное. В таком понимании, наиболее важном для обучения, анализ является средством поиска решения, доказательства, хотя в большинстве случаев сам по себе решением, доказательством еще не является. Синтез, опираясь на данные, полученные в ходе анализа, дает решение задачи или доказательство теоремы. Мы ограничимся этим пониманием анализа и синтеза. 7.2. Анализ лежит в основе весьма общего подхода к решению задач (имеется в виду нестандартных задач, для которых нет соответствующего алгоритма), известного под названием сведения (редукции) задачи к совокупности подзадач. Идея такого подхода состоит именно в свойственном для анализа «размышлении в обратном направлении» от задачи, которую предстоит решить, к подзадачам, затем от этих подзадач к подподзадачам и т. д., пока исходная задача не будет сведена к набору элементарных задач. Что же понимают под «элементарными задачами»? Это, во-первых, задачи, решаемые за один шаг поиска, во-вторых, более сложные задачи (т. е. не решаемые за один шаг поиска), решение которых уже известно из имеющегося опыта решения задач. Из такого понимания элементарной задачи следует, что чем больший опыт решения задач, тем больше задач становятся для нас «элементарными» в упомянутом выше смысле, а следовательно, тем меньше объем поиска при решении новых задач, их сведения к элементарным, так как цель поиска состоит в получении элементарных задач, останавливающих процесс поиска. Рассмотрим пример применения описанного подхода к решению задачи на доказательство: «Если через точку вне окружности провести секущую и касательную, то произведение секущей на ее внешнюю часть равно квадрату касательной». Обозначим для краткости через Р условие: — касательная, С — точка касания; — секущая,— ее внешняя часть; через Q — заключение: (рис. 20). Во введенных обозначениях задача запишется так: гДе Г — совокупность уже известных истинных предложений геометрии. Доказываемое равенство непосредственно из ранее известного получить как будто нельзя. Нельзя ли это равенство несколько преобразовать? Его можно представить в виде пропорции Следовательно, , Q-элементарная задача. Но тогда возникает новая задача: |