Главная страница
Навигация по странице:

  • Вибродуговая наплавка.

  • Широкослойная наплавка.

  • Плазменно-дуговая сварка и наплавка.

  • ремонт автомобилей. remont auto КАРАГОДИН. В процессе эксплуатации автомобиля его рабочие свойства постепенно ухудшаются изза изнашивания деталей, а также коррозии и усталости материала, из которого они изготовлены


    Скачать 7.18 Mb.
    НазваниеВ процессе эксплуатации автомобиля его рабочие свойства постепенно ухудшаются изза изнашивания деталей, а также коррозии и усталости материала, из которого они изготовлены
    Анкорремонт автомобилей
    Дата23.04.2022
    Размер7.18 Mb.
    Формат файлаdoc
    Имя файлаremont auto КАРАГОДИН.doc
    ТипДокументы
    #491441
    страница14 из 39
    1   ...   10   11   12   13   14   15   16   17   ...   39


    Электродуговая наплавка неплавящимся электродом (вольфрамовым) в среде аргона. Этот способ наплавки широко используется для восстановления алюминиевых сплавов и титана. Сущность способа — электрическая дуга горит между неплавящимся вольфрамовым электродом и деталью. В зону сварки подается защитный газ -

    аргон, а присадочный материал — проволока (так же, как при газовой сварке). Аргон надежно защищает расплавленный металл от окисления кислородом воздуха. Наплавленный металл получается плотным, без пор и раковин. Добавление к аргону 10... 12% углекислого газа и 2... 3 % кислорода способствует повышению устойчивости горения дуги и улучшению формирования наплавленного металла. Благодаря защите дуги струями аргона (внутренняя) и углекислого газа (наружная) в 3...4 раза сокращается расход аргона при сохранении качества защиты дуги.

    К преимуществам способа относятся — высокая производительность процесса (в 3...4 раза выше, чем при газовой сварке); высокая механическая прочность сварного шва; небольшая зона термического влияния; снижение потерь энергии дуги на световое излучение, так как аргон задерживает ультрафиолетовые лучи, а к недостаткам — высокая стоимость процесса (в 3 раза выше, чем при газовой сварке) и использование аргона.

    Режим сварки определяется двумя основными параметрами: силой тока и диаметром электрода. Силу сварочного тока выбирают исходя из толщины стенки свариваемой детали (чем тоньше стенка, тем меньше сила сварочного тока) и составляет 100...500 А. Диаметр вольфрамового электрода составляет 4... 10 мм.

    Устойчивость процесса наплавки и хорошее формирование наплавленного металла позволяют вести процесс на высоких скоростях — до 150 м/ч и выше.

    Для наплавки в среде защитных газов применяют специальные автоматы и установки АГП-2, АДСП-2, УДАР-300, УДГ-501; полуавтоматы А-547Р, Л-537, ПШП-10; преобразователи ПСГ-350, ПСГ-500.

    Вибродуговая наплавка. Этот способ наплавки является разновидностью дуговой наплавки металлическим электродом. Процесс наплавки осуществляется при вибрации электрода с подачей охлаждающей жидкости на наплавленную поверхность.

    На рис. 13.7 дана принципиальная схема вибродуговой установки с электромеханическим вибратором. Деталь 3, подлежащая наплавке, устанавливается в патроне или в центрах токарного станка. На суппорте станка монтируется наплавочная головка, состоящая из механизма 5 подачи проволоки с кассетой 6, электромагнитного вибратора 7с мундштуком 4. Вибратор создает колебания конца электрода с частотой 110 Гц и амплитудой колебания до 4 мм (практически 1,8...3,2 мм), обеспечивая размыкание и замыкание сварочной цепи. При периодическом замыкании электродной проволоки и детали происходит перенос металла с электрода на деталь. Вибрация электрода во время наплавки обеспечивает стабильность процесса за счет частых возбуждений дуговых разрядов и способствует подаче электродной проволоки небольшими порциями, что обеспечивает лучшее формирование наплавленных валиков.

    Электроснабжение установки осуществляется от источника тока напряжением 24 В. Последовательно с ним включен дроссель 9 низкой частоты, который стабилизирует силу сварочного тока. Реостат 8 служит для регулировки силы тока в цепи. В Зону наплавки при помощи насоса 1 из бака 2 подается охлаждающая жидкость (4...6%-ный раствор кальцинированной соды в воде), которая защищает металл от окисления.

    К преимуществам способа относятся: небольшой нагрев деталей, не влияющий на нагрев деталей; небольшая зона термического влияния; высокая производительность процесса; возможность получать наплавленный слой без пор и трещин; минимальная деформация детали, которая не превышает полей допусков посадочных мест. К недостаткам способа относят снижение усталостной прочности деталей после наплавки на 30...40%.

    Качество соединения наплавленного металла с основным зависит от полярности тока, шага наплавки (подача суппорта станка на один оборот детали), угла подвода электрода к детали, качества очистки и подготовки поверхности, подлежащей наплавлению, толщины слоя наплавки и др.

    Высокое качество наплавки получают при токе обратной полярности («+» на электроде, «—» на детали), шаге наплавки 2,3...2,8 мм/об и угле подвода проволоки к детали 15... 30°. Скорость подачи электродной проволоки не должна превышать 1,65 м/мин, а скорость наплавки — 0,5...0,65 м/мин. Наибольшая скорость наплавки
    К„ = (0,4...0,7)КПР, (13.4)
    где Vnp — скорость подачи электродной проволоки, м/мин.
    Knp = nsDh/(250d2i\), (13.5)

    где я — частота вращения детали, мин;

    s — шаг наплавки, мм/об;

    D — диаметр детали, мм;

    h — толщина наплавляемого слоя, мм;

    d — диаметр электродной проволоки, мм;

    г\ — коэффициент наплавки (г) = 0,85...0,90).
    Надежное сплавление обеспечивается при толщине наплавленного слоя, равной 2,5 мм.

    Структура и твердость наплавленного слоя зависят от химического состава электродной проволоки и количества охлаждающей Жидкости. Если при наплавке используется проволока Нп-80 (содержание углерода 0,75...0,85 %), то валик в охлаждающей жидкости закаляется до высокой твердости (26...55 HRC3). При использовании при наплавке низкоуглеродистой проволоки Св-08 твердость поверхности наплавки равна 14... 19 HRG,.

    Вибродуговой наплавкой восстанавливают детали с цилиндрическими, коническими наружными и внутренними поверхностями, а также с плоскими поверхностями (рис. 13.8).

    При однослойной наплавке толщина слоя колеблется от 0,5 до 3 мм, а при многослойной наплавке ее можно получить любой толщины.

    Рациональный режим наплавки: напряжение — 28...30 В; сила тока — 70...75 А (диаметр проволоки 1,6 мм); скорость подачи проволоки — 1,3 м/мин; скорость наплавки — 0,5...0,6 м/мин; амплитуда вибрации — 1,82 мм.

    Широкослойная наплавка. Сущность способа — это наплавка тел вращения за один оборот детали с поперечным колебанием электрода, а не по винтовой линии.

    Режимы наплавки: ток — 250...420 А; напряжение — 26...28 В; скорость подачи проволоки — 240...400 м/ч; скорость наплавки — 5,0...6,0 м/ч; вылет, смещение и размах колебаний электрода соответственно — 18...20, 6...7 и 27...57 мм.

    Внутренние цилиндрические и конические поверхности наплавляются с использованием специальных удлиненных мундштуков. Тела сложной формы наплавляют самозащитной порошковой проволокой на специализированных станках, позволяющих придать оси вращения горизонтальное положение.

    Плоские поверхности целесообразно наплавлять колебательными движениями электрода или с использованием электродной ленты. Параметры наплавки: ширина ленты — 20...30 мм; ток — 600... 1000 А; рациональная скорость наплавки для ленты шириной не более 30 мм — 15...60 м/ч. Процесс наплавки осуществляют отдельными участками во избежание коробления деталей.

    Плазменно-дуговая сварка и наплавка. Плазменная струя представляет собой частично или полностью ионизированный газ, обладающая свойствами электропроводности и имеющая высокую температуру. Она создается дуговым разрядом, размещенным в узком канале специального устройства, при обдуве электрической дуги потоком плазмообразующего газа. Устройства для получения плазменной струи получили название плазмотронов или плазменных горелок (рис. 13.9). Плазменную струю получают путем нагрева плазмообразующего газа в электрической дуге, горящей в закрытом пространстве. Температура струи достигает 10000... 30 000 "С, а скорость в 2... 3 раза превышает скорость звука.

    Плазмотрон состоит из охлаждаемых водой катода и анода, смонтированных в рукоятке. Катод обычно изготовляют из вольфрама или лантанированного вольфрама (вольфрамовые стержни с присадкой 1...2% окиси лантана), анод (сопло) — из меди (водоохлаждаемое сопло). Катод и анод изолированы друг от друга прокладкой из изоляционного материала (асбеста). Технические характеристики плазматронов для сварки и наплавки приведены в табл. 13.8 и 13.9.

    Для получения плазменной струи между катодом и анодом возбуждают электрическую дугу от источника постоянного напряжения 80... 100 В. Электрическая дуга, горящая между катодом и анодом, нагревает подаваемый в плазмотрон газ до температуры плазмы, т. е. до состояния электропроводности. В поток нагретого газа вводится материал для сварки и наплавки. Образующиеся расплавленные частицы материала выносятся потоком горячего газа из сопла и наносятся на поверхность изделия.

    В качестве плазмообразующих газов используют аргон и азот. Ар-гонная плазма имеет более высокую температуру —15 000... 30 000 °С, температура азотной плазмы ниже — 10 000... 15 000 "С. Применение нейтральных газов способствуют предотвращению окисления материалов.
    Таблица 13.1

    Технические характеристики плазмотронов для наплавки


    Параметры

    Плазмотроны для наплавки

    наружных

    внутренних

    Унивесаль-



    поверхностей

    поверхностей

    ного типа

    Допустимая сила тока, А

    260

    230

    310

    Производительность наплавки, кг/ч

    0,5. ,5,2

    0,3. ..3,0

    0,5. ..3,8

    Диаметр, мм: плазмообразующего сопла выходного отверстия защит-

    4 12. ..13

    4 10. ..12

    3...4 10... 12

    ного сопла







    Высота плазмотрона, мм

    135

    48

    12


    Таблица 13.9

    Технические характеристики плазмотронов для сварки





    Максимальная

    Толщи-

    Максимальный

    Масса,



    сварочная сила

    на сва-

    расход, л/мин

    кг

    Тип

    тока, А

    ривае-





    плазмотрона

    прямая

    обратная

    мого металла,

    газов

    охлаж-





    поляр-

    поляр-

    мм

    (суммар-

    дающей





    ность

    ность



    ный)

    воды



    ПРС-0201

    60

    20

    0,05. ..1,5

    6,6

    2,0

    0,1

    ПРС-0401

    100

    40

    0,1. ,2,5

    6,6

    2,0

    0,3

    ПРС-0301

    315



    0,5

    17,0

    4,0

    1,0

    ПМС-501

    500











    ПМС-804

    800



    6. ,12







    Многодуговой

    600

    400

    1...60

    45,0

    8,4

    з.о


    В зависимости от подключения плазматрона к источнику питания плазменная дута может быть открытой, закрытой и комбинированной.

    При открытой плазменной дуге (рис. 13.10, б) ток течет между вольфрамовым электродом и деталью. Плазмообразующий газ совпадает с дуговым разрядом на всем пути его следования от катода до анода. Такой процесс сопровождается передачей большого количества тепла детали. Открытая плазменная дуга применяется при резке металлов.

    При закрытой плазменной дуге (рис. 13.10, а) плазмообразую-щий газ проходит соосно с дугой лишь часть пути и, отделяясь от нее, выходит из сопла плазмотрона в виде факела плазмы. Температура закрытой плазменной дуги (светлой ее части) на 25...30% выше, чем открытой. Эта дуга применяется для плавления тугоплавких порошков, подаваемых в сжатую часть дуги.

    При комбинированной схеме горят две дуги (рис. 13.10, в): между вольфрамовым электродом и деталью; между вольфрамовым электродом и водоохлаждаемым соплом. Плазмотрон с комбинированной дугой позволяет раздельно регулировать плавление присадочного и основного материала изменением величины соответствующих сопротивлений.

    Исходный материал покрытия подается в плазматрон в виде порошка, проволоки, прутка. Режимы плазменной наплавки порошковыми материалами приведены в табл. 13.10.

    Плазменную наплавку выполняют одиночным валиком (при наплавке цилиндрических деталей по винтовой линии), а также с применением колебательных механизмов, на прямой и обратной полярности. Наиболее простой способ наплавки — это наплавка по заранее насыпанному на наплавляемую поверхность порошку.

    В ремонтной практике для получения износостойких покрытий применяют хромборникелевые порошки СНГН и ПГ-ХН80СР4, твердосплавные порошки на железной основе ФБХ-б-2, КБХ, УС-25 и другие, а также смеси порошков.

    Для плазменной наплавки выпускаются установки УМП-303, УПУ-602 и другие и оборудование-комплект КПН-01.23-215 Рем-деталь, пост 01.23-21 Ремдеталь, для сварки УПС-301, УПС-403, УПС-804. Толщина напыляемого материала — 0,1...2 мм.
    1   ...   10   11   12   13   14   15   16   17   ...   39


    написать администратору сайта