Главная страница
Навигация по странице:

  • 1.2.3 Классическая наука. Этап механистического естествознания.

  • Научно-исследовательская деятельность 2. Физической культуры и спорта в. Н. Попков научноисследовательская


    Скачать 2.55 Mb.
    НазваниеФизической культуры и спорта в. Н. Попков научноисследовательская
    Дата27.12.2019
    Размер2.55 Mb.
    Формат файлаdoc
    Имя файлаНаучно-исследовательская деятельность 2.doc
    ТипРеферат
    #102386
    страница5 из 34
    1   2   3   4   5   6   7   8   9   ...   34
    Наука в эпоху Возрождения. На рубеже XIV – XV вв. происходит существенный культурно-исторический сдвиг в отношении человека к природе и вслед за этим и к природоведению. Результатом этого явились географические открытия Х. Колумба (1451–1506), Васко де Гама (1469–1524), Магеллана (ок. 1480–1521) и др. Изобретенное Гуттенбергом (ок. 1406–1468) книгопечатание быстро распространяется по всей Европе. Научные изыскания начинают развертываться вне традиционных центров культурной жизни (университетов и монастырей). Они перемещаются в кружки интеллектуалов, любителей философии, истории, литературы и т. д. В XVI в. в Италии возникают такие новые формы организации интеллектуальной жизни, как академии.

    Гуманисты Возрождения Леонардо да Винчи (1452-1519), Монтень (1533 – 1592) выступают против принудительного характера преподавания, культивируемого в средние века, требуют от воспитания не только умственного, но и физического развития, радикально меняют содержание изучаемых дисциплин и сам характер образования. Они выдвигают новый идеал – образование как формирование и развитие личности в целостности ее способностей.

    Формирование опытной науки связано с возникновением представления о человеке, как активном исследователе и преобразователе природы. В искусственных условиях эксперимента ученые стремились «испытать» природный объект с тем, чтобы выявить его скрытые сущностные определения, знание которых создаст людям условия более комфортного существования в мире.

    В XV в Европе начался процесс отделения социально-политической, экономической, духовной жизни, науки и искусства от церкви и религии. В этих условиях и возникает экспериментально-математическое естествознание. Создание новой техники, в свою очередь, предполагало гораздо более широкое применение математических расчетов, использование прикладных математических моделей, которое стимулировало развитие математических исследований. Большинство исследователей истории науки отмечают, что в XIV – XV вв. естествознание близко подошло к созданию методов новой науки.

    Среди тех, кто подготавливал рождение науки, был Николай Кузанский (1401–1464), идеи которого оказали влияние на Джордано Бруно (1548–1600), Леонардо да Винчи (1452–1519), Н. Коперника (1473–1543), Галилео Галилея (1564–1642), И. Кеплера (1571–1630). В своих философских воззрениях на мир Кузанский вводит методологический принцип совпадения противоположностей – единого и бесконечного, максимума и минимума, из которого следует тезис относительности любой точки отсчета, тех предпосылок, которые лежат в фундаменте арифметики, геометрии, астрономии и других знаний. Отсюда он делает заключение о предположительном характере всякого человеческого знания, а не только того, которое мы получаем, опираясь на опыт. Поэтому он уравнивает в правах науку, основанную на опыте, и науку, основанную на доказательствах. Большое внимание Кузанский придает измерительным процедурам, поэтому интерес представляет попытка дать «опытное» обоснование геометрии с помощью взвешивания, которое воспринималось им как универсальный прием. Механические средства измерения уравниваются в правах с математическим доказательством. Применяя принцип совпадения противоположностей к астрономии, Кузанский приходит к выводу, что Земля не является центром Вселенной, а такое же небесное тело, как Солнце и Луна, что подготавливало переворот в астрономии, который в дальнейшем совершил Коперник.

    Для ученых эпохи Возрождения характерно стремление познать принципы функционирования механизмов, приборов, устройств и самого человека. В этой связи особый интерес представляют попытки Леонардо да Винчи применить в анатомии, которой он занимался на протяжении всей своей жизни, знания из прикладной механики и найти соответствие между функционированием органов человека и животных и функционированием известных ему технических устройств, механизмов. Леонардо да Винчи подошел к необходимости органического соединения эксперимента и его математического осмысления, которое и составляет суть того, что в дальнейшем назовут современным естествознанием, наукой в собственном смысле слова.

    Таким образом, в античный и средневековый периоды существовали лишь элементы, предпосылки науки, составляющие единое целое с философией, но сама наука возникает только в Новое время, в процессе ее отпочкования от традиционной философии.

    1.2.3 Классическая наука. Этап механистического естествознания.

    Зарождение и формирование эволюционных идей
    Классическая наука. Большинство историков науки считает, что наука, как своеобразная форма познания – специфический тип производства знаний и социальный институт, возникла в Европе, в Новое время, в эпоху становления капиталистического способа производства и дифференциации единого ранее знания на философию и науку. Наука начинает развиваться относительно самостоятельно. Период становления классической науки начинается примерно в XVI – XVII вв. и завершается на рубеже XIX – XX вв. Его, в свою очередь, можно разделить на два этапа: этап механистического естествознания (до 30-х гг. XIX в.) и этап зарождения и формирования эволюционных идей (до конца XIX – начала XX в.).

    Этап механистического естествознания. Бурное развитие производительных сил (промышленности, горного и военного дела, транспорта и т. п.) в период перехода Западной Европы, от феодализма к капитализму потребовало решения ряда технических задач. А это в свою очередь вызвало интенсивное формирование и развитие частных наук, среди которых особую

    значимость приобрела механика. Укрепляется идея о возможности изменения, переделывания природы, на основе познания ее закономерностей, все более осознается практическая ценность научного знания. Механистическое естествознание начинает развиваться ускоренными темпами.

    Этап механистического естествознания, в свою очередь, можно условно подразделить на две ступени – доньютоновскую и ньютоновскую, связанные соответственно с двумя глобальными научными революциями*, происходившими в XVI – XVII вв. и создавшими принципиально новое (по сравнению с античностью и средневековьем) понимание мира.

    Первую научную революцию, произошедшую в период Возрождения, связывают с возникновением гелиоцентрического учения Н. Коперника (1473–1543). Она ознаменовала конец геоцентрической системы, которую Коперник отверг на основе большого числа астрономических наблюдений и расчетов. Он отстаивал тезис о бесконечности Вселенной, о бесчисленном количестве миров, подобных Солнечной системе. Кроме того, Коперник высказал мысль о движении как естественном свойстве материальных объектов, подчиняющихся определенным законам, и указал на ограниченность чувственного познания. Это учение разрушало привычную религиозную картину мира.

    С теориями Галилея, Кеплера и Ньютона связывают вторую научную революцию – посленьютоновскую ступень развития механистического естествознания. В учении Г. Галилея (1564–1642) уже были заложены достаточно прочные основы нового механистического естествознания. В центре его научных интересов стояла проблема движения. Открытие принципа инерции, исследование им свободного падения тел имели большое значение для становления механики как науки. Галилей впервые ввел в познание мысленный эксперимент, опирающийся на строгое количественно-математическое описание и ставший характерной особенностью научного познания. Галилей показал, что наука без мысленного конструирования, без идеализации, без абстракций, без «обобщающих резолюций», опирающихся на факты – это все что угодно, но только не наука. Галилей первым показал, что опытные данные в своей первозданности вовсе не являются исходным элементом познания, что они всегда нуждаются в определенных теоретических предпосылках. Иначе говоря, опыт не может не предваряться определенными теоретическими допущениями, не может не быть «теоретически нагруженным».

    Иоганн Кеплер (1571–1630) установил законы движения планет относительно Солнца. Кроме того, он предложил теорию солнечных и лунных затмений и способы их предсказания, уточнил расстояние между Землей и Солнцем и др. Однако Кеплер не объяснил причины движения планет, ибо динамика – учение о силах и их взаимодействии – была создана позже Ньютоном.
    * На роли научных революций в развитии науки мы специально остановимся в разделе 2.1.2 при рассмотрении вопроса о развитии научного знания.
    Следует отметить, что в XVII в. происходит закрепление статуса науки в качестве особого социального института. В 1662 г. возникает Лондонское королевское общество, которое объединило ученых-любителей в добровольную организацию с определенным уставом, санкционированным высшей государственной властью – королем. В уставе Лондонского королевского общества, записано, что его целью является «совершенствование знания о естественных предметах и всех полезных искусствах с помощью экспериментов …». Королевское общество стремилось пропагандировать и поддерживать эмпиризм. Выдвинутая кем-либо гипотеза подвергалась проверке на опыте, в эксперименте и либо принималась и сохранялась, либо неминуемо отвергалась, если свидетельство эмпирического факта было для нее неблагоприятно. Члены общества отвергали работы, выполненные по другим нормам.

    Отдельные исследователи связывают рождение современной науки с появлением университетских исследовательских лабораторий и с проведением исследований, имеющих важное прикладное значение. Впервые это было осуществлено в Берлинском университете под руководством Вильгельма Гумбольдта.

    В конце XVI – начале XVII в. происходит буржуазная революция в Нидерландах, а с середины XVII в. – в Англии, наиболее развитой в промышленном отношении европейской стране. Буржуазные революции дали толчок для развития промышленности и торговли, строительства, горного и военного дела, мореплавания и т. п. Расширение торговых связей, открытие новых рынков сырья и сбыта товаров способствовали развитию таких дисциплин, как астрономия, математика и механика. Плодом революции в мировоззрении явилось новое отношение к науке, подрыв доверия к церкви и к трудам древних ученых, авторитет которых сковывал умы, широкое внедрение в науку метода исследования, основывавшегося на точном наблюдении и опыте.

    В период становления экспериментально-математического естествознания постепенно складываются в самостоятельные отрасли знания астрономия, механика, физика, химия и другие частные науки. В отличие от традиционной (особенно схоластической) философии наука Нового времени по-новому поставила вопросы о специфике научного знания и своеобразии его формирования, о задачах познавательной деятельности и ее методах, о месте и роли науки в жизни общества, о необходимости господства человека над природой на основе знания ее законов.

    Вторая научная революция завершилась творчеством Ньютона (1643–1727), научное наследие которого чрезвычайно глубоко и разнообразно. Главный труд Ньютона – «Математические начала натуральной философии» (1687). В этой и других своих работах Ньютон сформулировал понятия и законы классической механики, дал математическую формулировку закона всемирного тяготения, теоретически обосновал законы Кеплера и с единой точки зрения объяснил большой объем опытных данных (неравенства движения Земли, Луны и планет, морские приливы и др.). Кроме того, Ньютон, независимо от Лейбница, создал дифференциальное и интегральное исчисление как адекватный язык математического описания физической реальности. Научный метод Ньютона имел целью четкое противопоставление достоверного естественнонаучного знания вымыслам и умозрительным схемам натурфилософии.

    Содержание научного метода Ньютона (метода принципов) сводится к следующим основным «ходам мыслей»:

    1) провести опыты, наблюдения, эксперименты;

    2) посредством индукции вычленить в чистом виде отдельные стороны естественного процесса и сделать их объективно наблюдаемыми;

    3) понять управляющие этими процессами фундаментальные закономерности, принципы, основные понятия;

    4) осуществить математическое выражение этих принципов, т. е. математически сформулировать взаимосвязи естественных процессов;

    5) построить целостную теоретическую систему путем дедуктивного развертывания фундаментальных принципов, т. е. «прийти к законам, имеющим неограниченную силу во всем космосе»;

    6) «использовать силы природы и подчинить их нашим целям в технике».

    С помощью этого метода были сделаны многие важные научные открытия. На основе метода Ньютона в рассматриваемый период был разработан и использовался огромный арсенал самых различных методов: наблюдение, эксперимент, индукция, дедукция, анализ, синтез, математические методы, идеализация и др. Все чаще стали говорить о необходимости сочетания различных методов.

    Построенный Ньютоном фундамент оказался исключительно плодотворным и до конца XIX в. считался незыблемым.

    Несмотря на ограниченность уровня естествознания XVII в., механическая картина мира сыграла в целом положительную роль в развитии науки и философии. Она давала естественнонаучное понимание многих явлений природы, освободив их от мифологических и религиозных схоластических толкований. Она ориентировала на понимание природы из нее самой, на познание естественных причин и законов природных явлений.

    Материалистическая направленность механической картины Ньютона не избавила ее от определенных недостатков и ограниченностей. Механистичность, метафизичность мышления Ньютона проявляется в его утверждении о том, что материя – инертная субстанция, обреченная на извечное повторение хода вещей, из нее исключена эволюция; вещи неподвижны, лишены развития и взаимосвязи; время – чистая длительность, а пространство – пустое «вместилище» вещества, существующее независимо от материи, времени и в отрыве от них. Ощущая недостаточность своей картины мира, Ньютон вынужден был апеллировать к идеям божественного творения, отдавая дань религиозно-идеалистическим представлениям.

    Тем не менее, этот период характеризуется развитием механики, математики и стремлением к использованию количественных методов во многих областях научного познания. Одним из ведущих приемов исследования становятся измерения.

    Пионерами, провозгласившими измерение основой точных знаний, в том числе и применительно к исследованию живой природы, были Г. Галилей (1564–1672), Санторио (1561–1636), Д. А. Борелли (1608–1679).

    Санторио – автор труда «О статической медицине» и других сочинений, изобретает измерительные приборы, измеряет обмен веществ, старается установить норму и патологию в развитии организма. Галилей и его ученик Борелли изучают механику движения животных, устанавливают зависимость между их двигательными функциями и абсолютными размерами тела.

    К этому времени относится и становление математической статистики. Известная заслуга в этом принадлежит английской школе «политических арифметиков» во главе с Петти (1623–1687).

    Небывалые успехи механики породили представление о принципиальной сводимости всех процессов в мире к механическим. Поэтому и механика прямо отождествлялась с точным естествознанием. Ее задачи и сфера применения казались безграничными.

    Так, английский химик Р. Бойль (1627–1691) выдвинул программу, которая переносила в химию принципы и образцы объяснения, сформулированные в механике.

    В 1628 г. английский врач, анатом и физиолог Вильям Гарвей (1578–1657) опубликовал свой труд «Анатомическое исследование о движении сердца и крови у животных». В этой работе впервые было дано правильное представление о большом и малом кругах кровообращения и о сердце как двигателе крови в организме.

    Большое значение для развития физиологии имело открытие рефлекса французским философом, математиком и физиологом Рене Декартом (1596–1650), хотя сам процесс рефлекса в его представлении имел механическое объяснение.

    Ламарк, пытаясь найти естественные причины развития организмов, также опирался на вариант механической картины мира.

    Механицизм проявился в трудах физиологов, например, французский философ и врач Ж. Ламетри (1709–1751) утверждал, что организм человека является самозаводящейся машиной. Д. А. Борелли, автор сочинения «О движении животных» утверждал, что «действия животных совершаются вследствие, посредством и на основании механических явлений».

    Химик А. Л. Лавуазье (1743–1794) и математик П. С. Лаплас (1749–1827) провели первые измерения энергетических затрат организма.

    В середине XVII в. работами Пьера Ферма (1601–1665), Блеза Паскаля (1623–1662) и Христиана Гюйгенса (1629–1695) были положены начала теории вероятностей. В дальнейшем, благодаря трудам А. Муавра (1667–1754) и особенно П. С. Лапласа, К. Гаусса (1777–1855), Пуассона (1781–1840) и других математиков, открывших законы распределения случайных величин, теория вероятностей становится на прочную научную основу и находит применение в решении ряда практических задач. Первым, кто удачно соединил эмпирические методы антропологии и социальной статистики с математической теорией вероятностей, был ученик Лапласа бельгиец Адольф Кетле (1796–1874). В 1835 г. вышла в свет его книга «О человеке и развитии его способностей или опыт социальной физики», в которой на большом статистическом материале было показано, что различные физические признаки человека и даже его поведение подчиняются законам распределения вероятностей. В «Антропометрии» (1871) Кетле отметил, что описанные им закономерности распространяются не только на человека, но и на все другие живые существа. Кетле заложил основы биометрии. Математический аппарат этой науки создали последователи английской школы биометриков Ф. Гальтон (1822–1911) и К. Пирсон (1857–1936). В XX в. появились классические труды В. Госсета (1876–1937), печатавшегося под псевдонимом «Стьюдент», Р. А. Фишера (1890–1967) и других. С именем Стьюдента связано обоснование так называемой «теории малой выборки», открывшей новую страницу в истории биометрии. Р. Фишер разработал метод дисперсионного анализа, нашедший применение не только в биологии, но и в технике. Большой вклад в развитие математических методов, применяемых в биологии, внесли отечественные ученые: В. И. Романовский (1879–1954), С. И. Бернштейн (1880–1969), А. Я. Хинчин (1894–1959), А. Н. Колмогоров (1903–1987), В. С. Немчинов (1894–1946), М. В. Игнатьев (1894–1959) и многие другие. Много сделали наши ученые в области биометрической подготовки биологов и специалистов, смежных с биологией дисциплин: Поморский, (1893–1954); П. В. Терентьев (1903–1970); Ю. А. Филипченко (1882–1930); С. С. Четвериков (1880–1959) и др.

    Прогресс опытного знания, экспериментальной науки, наблюдавшийся в Новое время, привел к замене схоластического метода мышления новым методом познания, обращенным к реальному миру. Возрождались и развивались принципы материализма и элементы диалектики, ускоренными темпами развивался процесс размежевания между философией и частными науками. Однако по мере экспансии механической картины мира на новые предметные области наука все чаще сталкивалась с необходимостью учитывать особенности этих областей, требующих новых, немеханических представлений. Накапливались факты, которые все труднее было согласовывать с принципами механической картины мира. Она теряла свой универсальный характер, расщепляясь на ряд частнонаучных картин, начался процесс расшатывания механической картины мира. В середине XIX в. она окончательно утратила свой общенаучный статус.

    Зарождение и формирование эволюционных идей. С конца XVIIIв. в естественных науках накапливались факты и эмпирический материал, которые не «вмещались» в механическую картину мира и не объяснялись ею. «Подрыв» этой картины мира шел главным образом с двух сторон: во-первых, со стороны самой физики и, во-вторых, со стороны геологии и биологии.

    Первая линия «подрыва» была связана с исследованиями в области электрического и магнитного полей английских ученых М. Фарадея (1791–1867) и Д. Максвелла (1831–1879). Фарадей обнаружил взаимосвязь между электричеством и магнетизмом, ввел понятия электрического и магнитного полей, выдвинул идею о существовании электромагнитного поля. Максвелл создал электродинамику и статистическую физику, построил теорию электромагнитного поля, предсказал существование электромагнитных волн, выдвинул идею об электромагнитной природе света. Тем самым материя предстала не только как вещество (как в механической картине мира), но и как электромагнитное поле.

    Поскольку электромагнитные процессы не сводились к механическим, стало формироваться убеждение в том, что основные законы мироздания – не законы механики, а законы электродинамики. Работы в области электромагнетизма сильно подорвали механическую картину мира и по существу положили начало ее крушению. С тех пор механическая картина мира начала сходить с исторической сцены, уступая место новому пониманию физической реальности.

    Второе направление «подрыва» механической картины мира связано работами английского геолога Ч. Лайеля (1797–1875) и французских биологов Ж. Б. Ламарка (1744–1829) и Ж. Кювье (1769–1832).

    Ж. Б. Ламарк создал первую целостную концепцию эволюции живой природы. По его мнению, виды животных и растений постоянно изменяются, усложняясь в своей организации в результате влияния внешней среды и некоего внутреннего стремления всех организмов к усовершенствованию.

    В первые десятилетия XIX в. было фактически подготовлено «свержение» метафизического способа мышления, этому способствовали три великих открытия: создание клеточной теории, открытие закона сохранения и превращения энергии и разработка Ч. Дарвиным (1809–1882) эволюционной теории.

    Теория клетки, созданная немецкими учеными М. Шлейденом (1804–1881) и Т. Шванном (1810–1882) в 1838–1839 гг., доказала внутреннее единство всего живого и указала на единство происхождения и развития всех живых существ. Она утвердила общность происхождения, а также единство строения и развития живой природы.

    Огромное значение для развития естествознания имели открытие М. В. Ломоносовым (1711–1765) закона сохранения вещества и движения, и последовавшее за ним установление Ю. Майером (1814–1878), Д. Джоулем (1818–1889) и Г. Гельмгольцем (1821–1894) закона сохранения и превращения энергии. Было доказано, что признававшиеся ранее изолированными так называемые «силы» – теплота, свет, электричество, магнетизм и т. п., — взаимосвязаны, переходят при определенных условиях одна в другую и представляют собой лишь различные формы одного и того же движения в природе. Энергия, как общая количественная мера различных форм движения материи, не возникает из ничего и не исчезает, а может только переходить из одной формы в другую. Это фундаментальное открытие помимо общего мировоззренческого значения оказало влияние и на развитие физиологии растений и человека. Стал понятным круговорот энергии в природе, в растительном организме. Как показал К. А. Тимирязев (1843–1920), свободная энергия солнечных лучей превращается в химическую энергию сложных органических соединений, образующихся в зеленом растении в процессе фотосинтеза; в животном организме химическая энергия органических соединений, полученных с пищей, при их расщеплении освобождается и превращается в кинетические виды энергии: в тепловую, механическую, электрическую.

    Эволюционная теория Ч. Дарвина (1809–1882), окончательно оформленная в его главном труде «Происхождение видов путем естественного отбора» (1859), показала, что растительные и животные организмы (включая человека) – не созданы богом, а являются результатом естественного развития (эволюции) органического мира и ведут свое начало от немногих простейших существ, которые произошли от неживой природы. Тем самым были найдены материальные факторы и причины эволюции – наследственность и изменчивость – и движущие факторы эволюции – естественный отбор для организмов, живущих в «дикой» природе, и искусственный отбор для разводимых человеком домашних животных и культурных растений. Впоследствии теорию Дарвина подтвердила генетика, показавшая механизм изменений, на основе которых и способна работать теория естественного отбора. В середине XX в., особенно в связи с открытием в 1953 г. Ф. Криком (1916–2004) и Дж. Уотсоном (рожд. 1928) структуры ДНК, сформировалась так называемая систематическая теория эволюции, объединившая классический дарвинизм и достижения генетики.

    Во второй половине XIX века благодаря работам химиков было изучено количество тепла, освобождаемое при сжигании вне организма основных питательных веществ, иначе говоря, их калорическая ценность. Одновременно физиологами были разработаны способы, дающие возможность учета количества энергии, освобождаемой организмом при покое и работе разной тяжести.

    Значительные результаты были получены благодаря созданию методики электрического раздражения и графической регистрации деятельности органов с помощью специальных приборов: кимографа, миографа, сфигмографа и др. В этом отношении особенно велики заслуги немецкого физиолога Э. Дюбуа-Реймона (1818–1896), подробно разработавшего методику электрического раздражения живых тканей. Исследования электрических явлений, наблюдаемых в организме, начатые Л. Гальвани (1773–1798) и А. Вольта (1745–1827) и продолженные Н. Е. Введенским (1852–1922), приблизили к пониманию физиологического процесса возбуждения. При этом И. М. Сеченовым (1829–1905) и В. Я. Данилевским (1852–1939) были впервые исследованы электрические явления в нервных центрах, которые привлекли особый интерес физиологов в XX столетии. Выдающееся значение имели труды И. М. Сеченова, открывшего 1862 г. процесс торможения в центральной нервной системе, а в 1863 г. опубликовавшего гениальное произведение «Рефлексы головного мозга».

    На протяжении XIX столетия, особенно его второй половины, физиологические знания чрезвычайно расширились и углубились. Успехи физиологии способствовали научному обоснованию материалистического миропонимания, которым в значительной степени прониклось естествознание этого столетия.

    Крупным достижением этой области являются выяснение химической динамики мышечного сокращения и установление источников энергии, используемой при работе мышц (О. Мейергоф (1884–1951), Я. О. Парнас (1884–1949).

    1   2   3   4   5   6   7   8   9   ...   34


    написать администратору сайта