Главная страница
Навигация по странице:

  • у х 1 2 3

  • Методические указания и индивидуальные задания для выполнения типового расчета Хабаровск Издательство двгупс 2007 удк 519. 2 (075. 8)


    Скачать 0.88 Mb.
    НазваниеМетодические указания и индивидуальные задания для выполнения типового расчета Хабаровск Издательство двгупс 2007 удк 519. 2 (075. 8)
    АнкорGamaley.doc
    Дата04.05.2017
    Размер0.88 Mb.
    Формат файлаdoc
    Имя файлаGamaley.doc
    ТипМетодические указания
    #6983
    страница21 из 33
    1   ...   17   18   19   20   21   22   23   24   ...   33

    Вариант № 20


    1. Имеется восемь различных книг. Сколькими способами можно разослать их по одной каждому из восьми различных адресатов? Сколько имеется способов разделить книги на две пачки по четыре книги в каждой?

    2. На каждой из восьми одинаковых карточек написаны числа: 2, 4, 6, 7, 8, 11, 12, 13. Карточки тщательно перемешаны. Наудачу берутся карточки. Найти вероятность того, что образованная из двух выбранных чисел дробь сократима.

    3. Вероятность попадания в цель при залпе из двух орудий равна 0,38. Найти вероятность поражения цели при одном выстреле первым из орудий, если известно, что для второго эта вероятность равна 0,8.

    4. Наудачу взяты 2 положительных числа Х и У, каждое их них не превышает единицы. Найти вероятность того, что сумма Х+У не превышает единицы, а произведение ХУ не меньше 0,4.

    5. В первом ящике находится 20 деталей, из них 15 стандартных, во втором – 30, из них 24 стандартных, в третьем – 10, из них 6 стандартных. Найти вероятность того, что наудачу извлеченная деталь из наудачу взятого ящика стандартная.

    6. Вероятность выпуска сверла повышенной хрупкости (брак) равна 0,02. Сверла складываются в коробки по 100 штук. Определить вероятность того, что а) в коробке не окажется бракованных сверл, б) число бракованных сверл не превысит двух.

    7. Вероятность выигрыша в лотерее на 1 билет равна 0,6. Куплено
      11 билетов. Найти наивероятнейшее число выигрышных билетов и соответствующую вероятность.

    8. Вероятность поражения мишени при одном выстреле равна р=0,3. Сколько нужно произвести выстрелов, чтобы с вероятностью 0,98 отклонение относительной частоты попадания от вероятности р по абсолютной величине не превзошло 0,02?

    9. Вероятность «сбоя» в работе телефонной станции при каждом вызове равна 0,011. Определить вероятность того, что среди 1000 поступивших вызовов имеется 8 сбоев.

    10. Стрелок произвел 3 выстрела по мишени. Вероятность попадания в мишень при каждом выстреле равна 0,4. За каждое попадание стрелку насчитывается 5 очков. Построить ряд распределения числа выбитых очков и найти математическое ожидание и дисперсию этой случайной величины.

    11. Случайная величина Х задана плотностью распределения:



    Найти параметр с, функцию распределения F(x) случайной величины, математическое ожидание, дисперсию, среднее квадратическое отклонение, вероятность попадания этой случайной величины в интервал (;). Построить графики функций f(x), F(x).

    1. Независимые случайные величины Х и У заданы следующими законами:



    Х

    2,3

    2,5

    2,7

    2,9




    У

    1

    2

    3

    Р

    0,4

    0,3

    0,2

    0,1




    Р

    0,3

    0,5

    0,2

    Укажите законы распределения случайной величины Х+У, Х-У и найдите их математическое ожидание и дисперсию.

    1. Используя неравенство Чебышева, оценить вероятность того, что случайная величина с дисперсией 0,0162 отклонится от математического ожидания менее, чем на 0,2.

    2. Двумерная случайная величина (Х, У) задана таблицей. Найдите её ковариацию, коэффициент корреляции и сделать вывод о зависимости случайных величин Х и У.



    у х

    1

    2

    3

    1,5

    0,03

    0,02

    0,02

    2,9

    0,06

    0,13

    0,03

    4,1

    0,4

    0,07

    0,02

    5,6

    0,15

    0,06

    0,01


    1   ...   17   18   19   20   21   22   23   24   ...   33


    написать администратору сайта