Методика преподования математики. Предисловие рецензенты доктор педагогических наук, профессор Н. М. Назарова кандидат педагогических наук В. В. Эк Перова М. Н
Скачать 4.24 Mb.
|
168 320 216 104 96СЛОЖЕНИЕ И ВЫЧИТАНИЕ МНОГОЗНАЧНЫХ ЧИСЕЛ Сложение и вычитание многозначных чисел, кроме случаев, .к.манных выше, выполняется приемами письменных вычислений. !(>< повой алгоритмов сложения и вычитания чисел любого класса |ииляется поразрядное сложение и вычитание. Казалось бы, между сложением и вычитанием трехзначных и Многозначных чисел нет существенной разницы. Однако наблюдения и анализ ученических работ показывают, что чем больше числа, т. е. чем больше в них знаков, тем труднее они оказываются для умственно отсталых школьников, тем больше ошибок они допускают в действиях с этими числами. Одной из причин ошибок 6 примерах с многозначными числами является неустойчивость внимания, быстрая утомляемость учащихся. При подборе примеров надо соблюдать такой порядок:
3) на третьем этапе выполняются действия на вычитание, в которых уменьшаемое содержит один или несколько нулей или нули в уменьшаемом чередуются с единицами: 8 97 000-378; 01 010-57 528. Для учащихся оказываются неодинаковыми по трудности примеры с различным количеством знаков в слагаемых. Примеры, в которых меньше знаков содержит первое слагаемое, чем второе, вызывают больше трудностей, чем примеры, в которых меньше знаков содержит второе слагаемое, чем первое, или примеры с одинаковым числом знаков (424 735+102 524). Это относится и к вычитанию. При сложении и вычитании соблюдается поклассная и поразрядная запись чисел в столбик. Сложение и вычитание производятся поразрядно, начиная с единиц первого класса. Например: 3 385 457 4425 381 132 55 784 12 115 3 225 67 899 8 Перова М. Н. На первых уроках надо требовать от учащихся объяснен! поразрядного сложения и вычитания, т. е. объяснения того, кг разрядные единицы складываются или вычитаются. Затем объя нение свертывается. Перед решением примеров на сложение и вычитание с перех дом через разряд необходимо проводить подготовительные упраж нения, которые облегчат письменные вычисления. Например: 1 7 ед. + 8 ед. = 15 ед.
10 ед. тыс. — это 1 дес. тыс. 10 сот. тыс. — это 1 млн 5 ед. — это 5 ед. и 1 дес. 13 дес. — это 3 ед. и 1 дес. 15 сот. — это 5 сот. и 1 тыс 10 дес. — это 1 сот. 10 сот. — это 1 тыс. 10 дес. тыс. — это 1 сот. тыс Приводим рассуждения, которыми сопровождается решение числовых выражений на сложение и вычитание с переходом чере:< разряд: О К 5 ед. прибавим 6 ед., получим 11 ед. 11 ед. — это 1 ед. и 1 дес. 1 ед. запишем под единицами, 1 дес. прибавим к десяткам. К 4 дес. прибавим 5 дес., получим 9 дес. К 9 дес. прибавим 1 дес., получим 10 дес. 10 дес. — это 0 дес. и 1 сот.
37 845 101010 283 405 ' 1 748 281 657 т 5 ед. нельзя от нять 8 ед. Занимаем 1 дес., но десятков нет в уменьшаемом Занимаем 1 сот. и дробим ее в десят ки. В сотне 10 дес. 1 дес. зани маем и дробим его в единицы. Над десятками и над сотнями ставим точки. 1 дес. и 5 ед. — это 15 ед. Вычитаем 8 ед. из 15 ед. и получаем 7 ед. Записываем 7 ед. под единицами. Из 9 дес. вычитаем 4 дес., получаем 5 дес. 5 дес. записываем под десятками и т. д. Особого внимания заслуживают случаи, в которые входят слагаемые, содержащие нули, или случаи, в ответах которых получаются нули в одном или нескольких разрядах. Например: , 58475 1 526 350007 ,355736 "*" 125 080 + 4 572 3 475 087 60308 226 Выполняя действие вычитания, в котором уменьшаемое содер-11 несколько нулей подряд, надо вспомнить решение случаев ида 500-235, 1000-384. Трудность выполнения действий возрастает по мере увеличения |цсла нулей в уменьшаемом (40 457-6750; 40 007-6750; 40 000- -0750; 40 107-6750; 40 100-6750). Особенно трудны случаи (пос- И'дыие два), в которых в уменьшаемом нули перемежаются со знача- Лцими цифрами. При их решении умственно отсталые учащиеся пере- Мюсят без изменения свой опыт выполнения действий на вычитание чисел, в которых нули в уменьшаемом были расположены подряд: Ю 10 10 10 40000 ' 16 756 23 344 10 10 40000 ' 16 756 23244 Во втором примере к 9 сотням учащиеся не прибавляют 1 сотню и вычитают 7 сотен не из 10 сотен, а из 9 сотен. Выполнение действий сложения и вычитания с двумя компонентами сопровождается проверкой обратными действиями, кроме этого, сложение проверяется перестановкой слагаемых, а вычитание — не только сложением, но и вычитанием. Проверка действий выполняется и на счетах. Решаются также примеры с тремя и четырьмя компонентами вида 54 800+147 385+4768; 100 070+148 280-7525; 378 040-—275 896+178 608. В первых двух примерах учащиеся выполняют одно действие, а в третьем последовательно два действия. Необходимо указать на различие в записи и решении этих примеров. Практическое использование сочетательного закона сложения обычно сопровождается заданием: решить наиболее удобным способом (37 864+15 000+7000+4836). В этом случае учащиеся должны устно сложить 15 тыс. и 7 тыс., а затем провести письменно сложение трех слагаемых: 37 864+22 000+4836. Разнообразить упражнения на сложение и вычитание можно, предлагая задания на сравнение результатов действий, на провер ку правильности расстановки знаков равенств и неравенств. На пример, решить столбик примеров и расположить числа, получен ные в ответах, от большего к меньшему; выписать из ответов четные или нечетные, простые или составные числа; проверить, правильно ли поставлены знаки: 8* 227 38'-000-17 380>45 000-37 945 57 605+15 708=81 735-8 420 Решаются также примеры на нахождение неизвестных коми» нентов действий сложения и вычитания. Разнообразие заданий, их вариации позволяют поддерживат • интерес к выполнению действий, повышают эффективность про цесса обучения, предупреждают вербализм. Умножение и деление многозначных чисел Умножение и деление многозначных чисел представляют гораз до больше трудностей, чем сложение и вычитание. Это связано с тем, что ученики нетвердо знают таблицу умножения. Даже т<-учащиеся, которые запомнили таблицу умножения, затруднялись применить ее при решении примера с многозначными числами, т. е. актуализировать свои знания и использовать их. Трудности возникают и тогда, когда надо единицы низшего разряда перевести в высший, удержать их в памяти (умножение с переходом через разряд). Неумение долгое время сосредоточить внимание на выполнении действия приводит к тому, что учащиеся низшие разряды числа умножают правильно, а при умножении высших разрядов допускают ошибки. Неустойчивость внимания, стереотипность мышления являются нередко и причиной таких ошибок: умножая первый множитель на двузначный второй множитель, умственно отсталый школьник производит умножение только на единицы, т. е. находит первое неполное произведение, а на десятки умножение не производит, при этом считает, что действие им выполнено полностью. Как и при умножении в пределах 1000, наибольшее затруднение вызывают случаи, в которых в множителе нуль находится в середине или на конце (105x9, 580x4). Умения и навыки в делении многозначных чисел, особенно на двузначное и трехзначное числа, вырабатываются с еще большим трудом. Умственно отсталым школьникам трудно, а некоторым даже непосильно самостоятельно применить алгоритм деления. Требуется помощь учителя, его наводящие вопросы, чтобы ученик все операции при делении применил последовательно и правильно. Особенно трудно подобрать цифру частного и устно проверить, подходит ли она. Например, характерная ошибка, которая 228 [тречается при делении, — неправильный выбор цифры частно-I, получение остатка больше делителя. Умственно отсталые школьники, даже старших классов, отно-1тся к полученным ответам некритично. Они редко себя контро-_Фуют, не замечают абсурда (частное может получиться больше Делимого), полученного в ответе, и это их не смущает, не наталкивает на мысль о неправильности выполнения деления. Наибольшего внимания и большего количества упражнений требуют примеры, в которых в частном получаются нули, как в середине, так и на конце. П 24 13794 33240 24 72 |
5548 "4 | 4 |
1387 |
15 "12
еля 5:4, в частном берем по 1, проверяем: 1x4=4. Из 5 вычитаем 4, остаток 1. Сносим сотни. Делим 15 сотен на 4. Берем по 3 и т. д. Частное 1387. Делим проверку: 1387x4.
З
34 "32
28 "28
атем подбираются примеры, в которых высший разряд делимого не делится нацело на делитель 12 575:5 (один десяток тысяч не делится на 5). Тогда на 5 делим 12 единиц тысяч. В частном будет четырехзначное число. Ставим 4 точки в частном, начинаем делить 12 ед. тысяч на 5 и т. д. Необходимо работать в этот период над закреплением алгоритма деления. Чтобы ученики лучше запомнили последовательность рассуждений при выполнении этого действия, полезно использовать схему, в которой это подробно излагается: 1) прочитай и запиши пример; 2) выдели первое неполное делимое; 3) определи количество цифр в частном и поставь на их месте точки; 4) раздели неполное делимое и запиши полученное число в частное; 5) умножь это число на делитель, чтобы узнать, какое число ты разделил; 6) вычти, чтобы узнать, сколько еще единиц осталось разделить; остаток должен быть меньше делителя; 7) остаток вырази в единицах низшего разряда и прибавь к нему единицы такого же разряда делимого; 8) деление так же продолжай до полного решения примера; 9) сопоставь частное и делимое; частное должно быть меньше делимого; 10) проверь ответ действием
умножения.
Этой схемой учитель пользуется при объяснении деления, учит ею пользоваться учащихся. Сначала учащиеся читают по схеме каждое задание и отвечают. Затем задание читается ими про себя, а ответ произносится вслух. Наконец, учащиеся пользуются этой схемой самостоятельно, учитель может помогать учащимся лишь наводящими вопросами.
Особое внимание следует уделить таким случаям деления, в которых нули получаются в середине или на конце частного. Например: «Разделим 3840 на 4. 3 тысячи на 4 не делятся. Берем 38 сотен и делим их на 4. В частном получится трехзначное число. Поставим в частном 3 точки. 38 сотен разделим на 4, получим по 9 сотен. Умножим 9 сотен на 4, получим 36 сотен. От вычитания получим 2 сотни — это 20 десятков, 20 десятков да
233
еще 4 десятка, всего 24 десятка. Делим 24 десятка на 4. Возьмем по 6, умножим 6 на 4, получим 24. О единиц разделим на 4. получим 0.
Р
Т046
Наряду с общими случаями учащиеся разбирают решение особых случаев, когда в частном получаются нули:
825000 "6000 | 3000 •275" |
22500 "21000 | |
15000 "15000 |
Умножение на двузначное число
При умножении на двузначное число до сознания школьников необходимо довести тот факт, что первый множитель умножается дважды: сначала на единицы множителя, а затем на десятки множителя. Это не сразу понимают все ученики, а поэтому и заканчивают умножение раньше, считая, что они все сделали, найдя первое промежуточное произведение. Многие учащиеся вспомогательной школы не осознают необходимости сложения двух промежуточных произведений.
237
- — > ..^"/^""'
^ 18 десятков). Умножили все число на десятки и получу
ли второе неполное произведение. Теперь между первьн1 и вторым произведениями ставим знак «плюс» и склады-* ваем их. Число, полученное в ответе (7872), — произведение от умножения двух чисел (246 и 32).
Ученики так же подробно объясняют решение первых примеров. Затем для выработки навыков вычислений объяснения свертываются. Однако время от времени учитель возвращается к ним. Полезно сопоставить пример на умножение на двузначное число с примером на умножение на круглые десятки, установив, что общего и что различного в их решении. Например:
238
Все это требует от учителя школы VIII вида тщательной неторопливого объяснения, а от учащихся — подробных расе у») дений, комментирования выполняемых действий.
Рассуждения можно провести так: 246*32. Множитель — л! значное число. Оно состоит из 2 ед. и 3 дес. Сначала первь множитель 246 умножим на 2 ед. Затем 246 умножим на 3 дес или 30.
,
246
.246
30 7380
X
492
"*" 7380
7872
К первому произведению прибавим второе. Мы произвели три действия:
умножили 246 на единицы множителя;
умножили 246 на десятки множителя;
сложили полученные произведения. ,
Для удобства записи и более быстрого умножения на двузна<|
ное число запись и вычисления производят так: множители заш сывают друг под другом, проводят черту и ставят знак умножени| слева. Умножают первый множитель на единицы второго и зат сывают полученное произведение под чертой. Это первое непо
ное произведение. Умножение еще не закончено, первы] 246 множитель умножают на десятки второго и первс 32 число, полученное от умножения на десятки, записыв _1_ 492 ют П0д десятками (6 умножили на 3 десятка,
/
,346
346
42
692 1384 14532
,540
X
X
'37
378 162 19980
ОО '
Необходимо рассмотреть случаи умножения на двузначное •(ело, когда первый множитель оканчивается нулем (540x37). |т«6ы умножить 540 на 37, надо 54 десятка умножить на 37,
Олучим 1998 десятков. К полученному произведению припишем
уль, т. е. умножим его на 10.
• Учитель может и не выделять как особые случаи умножение на |руглые десятки или умножение чисел, оканчивающихся нулями, |е изменяя при этом привычную для учащихся форму записи и |лгоритм вычисления, например:
540 х 37 3780 1620
,540 60
,346 40
X
000 3240
000 1384
19980
13840
От такой развернутой формы записи можно отказаться постепенно, подождав момента, когда учащиеся сами поймут, что при умножении на нуль неполное произведение всегда равно нулю и , его можно не записывать,
Деление на двузначное число
Деление на двузначное число впервые вводится в 7-м классе школы VIII вида. Первое знакомство с этим видом деления происходит на примерах внетабличного деления, а именно при делении двузначного числа на двузначное, когда в частном получается однозначное число. В этом случае частное отыскивается приемом округления делимого и делителя до круглых чисел. Например: «При отыскании частного 93:31 округляем делимое 93 до 90, делитель 31 до 30. Тогда 90:30=3. Значит, в частном надо взять по 3. Проверяем: 31x3=93. Ответ верен.
Рассмотрим другой пример: 81:27. Округлим 81 до 80, а 27 до 30, получим 80:30. Можно взять по 2. Проверим: 27x2=54, 84—54=27. Значит, в частном должно быть большее число. Берем по 3. Проверяем: 27x3=81. Частное равно 3».
Однако, как показывает опыт, такие рассуждения и множество промежуточных вычислений доступны не всем учащимся. Поэтому целесообразно учащихся познакомить с приемом деления, который доступен большинству умственно отсталых школьников, если они овладели приемом умножения двузначного числа на однозначное. Учитель показывает, что при делении на двузначное число труднее всего правильно подобрать цифру частного. Чтобы преодолеть эту трудность можно воспользоваться последовательным умноже-
239
нием частного на числа 1, 2, 3 и т. д., пока не получится числ<> близкое к делимому. Например, 81:27.
27x1=27 — это число меньше 81.
27x2=54 — это число меньше 81.
27x3=81 — получилось число, равное делимому, значит, нал в частном взять по 3. Все промежуточные действия умножени для отыскания нужной цифры частного необходимо производить > тетради. Запись решения примера выглядит так:
2
27 Т
81 "81
7x1=27
,27
х
X
27
Х 3 8Т
Далее последовательно рассматривается деление трех-, четы рех-, пяти- и шестизначных чисел на двузначное число.
При решении всех этих примеров необходимо учитывать, что отделяемые две цифры делимого составляют число, которое либо равно, либо больше делителя, и только после этого рассматрива ются случаи, когда это число меньше делителя, и в этих случаях требуется отделить три цифры делимого.
2
3x1=23 23x2=46
35x1=35 35x2=70
,
,35
V35
Х 4 140
.35
35
Х
X
5
Л 7 "245"
Т75"
7
34—
3x1=73
V
73 Х 2 Т46"
V73
Х 4 "292"
73
Х 3 "2Т9"
Наиболее успевающие по математике учащиеся постепенно сокращают число проб на умножение; умножение делителя на 1 они не записывают, некоторые устно умножают делитель на 2, а то я на 3, и начинают умножать на 4 и 5 и т. д. 240
Естественно, что сильным учащимся следует показать прием мкругления делимого и делителя.
Например, рассматривается деление трехзначных чисел на дву-япачное число при однозначном частном и, например: 465:93. Рассуждения проводим так: «Делитель заменяем круглым числом. ;->то число 90, или 9 десятков. В делимом тоже отделяем десятки, их 46. Делим 46 на 9. В частном берем 5. Проверяем, умножая <)3х5. В данном случае 5 подходит».
Рассматриваются и случаи деления с остатком:
3
728
70
28
5 ТГост. 28)
В
805 23 "69 [35"
115 '115
след за делением с остатком рассматривается деление трехзначного числа на двузначное, когда в частном получается двузначное число. Вначале в делимом подбираются такие числа, в которых первое неполное делимое состояло бы из двух цифр, а делитель состоял из цифр, не превышающих 5. «При выполнении деления делитель заменяем наименьшим круглым числом 20. В делимом отделяем две цифры. Первое неполное делимое — 80 десятков. В частном будет двузначное число. 80 делим на 20, будет по 4, но по четыре брать нельзя, так как 23x4=92. Берем по 3. Проверяем: 23x3=69, 80—69=11. Остаток меньше делителя. Значит, первую цифру подобрали правильно. 115 делим на 20. Берем первые две цифры делимого (11) и первую цифру делителя (2), 11 делим на 2. Берем по 5. Проверяем: 23x5=115. Вычитаем. Остатка нет. Значит, 5 подобрали правильно. Частное 35. Проверим умножением: 35x23=805». После этого рассматриваются случаи деления четырехзначного числа на двузначное.
И наконец, рассматриваются такие случаи деления: число, состоящее из двух цифр делимого, не делится на делитель.
Р
17845 43 "172 |415
64 " 43
215 215
ассуждения проводятся так: «17 тысяч не делятся на 43, тогда на 43 разделим 178 сотен. В частном получится трехзначное число — ставим 3 точки. Делитель 43 заменим меньшим круглым числом 40. Делим 178 на 40. Берем в делимом первые две цифры, а в делителе первую цифру. Получаем делимое 17, а делитель 4. 17 делим на 4. Берем по 4, проверяем умножением и т. д.».
241
В методической литературе, связанной с вопросами начально обучения математике, после окончания деления ставится ну,) показывающий, что деление закончено и произведено без остап
В школе VIII вида нуль записывать не рекомендуется. От показывает, что учащиеся (по аналогии с решением примеров, которых нули переносятся в частное из делимого) этот нуль си сят в частное, рассуждая при этом так: «О делим на 82, получа< ся нуль. В частное записываем нуль».
Например:
О
82 3070"
25174 "246
574 "574
0 О
собое внимание необходимо уделять рассмс рению случаев, когда делимое оканчивается ну}. ми и когда нули получаются в середине частноГ] Подготовительными упражнениями являют! деление нуля (0:5, 0:12), а также решение пр! меров с небольшими числами вида 320:8=4| 312:3 и т. д. Рассмотрим решение пример 24 000:75. Рассуждения проводятся так:
«
24000 "225
Т50 "150
Первое неполное делимое — 240 сотен. Зн чит, в частном будет трехзначное число. Ставим точки. Округляем делитель до 70. Делим 240 I 70. Сначала 24 делим на 7. Берем по 3. Провер ем умножением. Остаток 15. Делим 150 дес. н«. 75. 15:7 берем по 2. Проверяем умножением. Десятки разделились все. Делим 0 единиц: 0:75=0. Пишем в частном 0. Частное 320». После изучения всех четырех арифметических действий для закрепления вычислительных навыков решаются примеры вида 626 640:84+212 760x36, (7368+28 300)х 12-17 899.
Вопросы и задания
Составьте схему последовательности изучения нумерации многознач
ных чисел по I и II вариантам.
Изготовьте эскизы таблиц для изучения нумерации многозначных
чисел, покажите методику их использования.
Сравните алгоритмы умножения (деления) многозначного числа на
однозначное, двузначное, трехзначное числа.
Проанализируйте ошибки учащихся при выполнении четырех арифме
тических действий, определите их причины, наметьте пути преодоления.
242
Глава 14 МЕТОДИКА ИЗУЧЕНИЯ МЕТРИЧЕСКОЙ СИСТЕМЫ МЕР
ОБУЧЕНИЕ ИЗМЕРЕНИЯМ
В школе VIII вида учащиеся знакомятся с единицами измерения длины, стоимости, массы (веса), емкости, площади, объема и иремени, учатся производить измерения величин с помощью про-стейших инструментов.
Занятия по данной теме способствуют формированию обобщений, совершенствованию целенаправленности и точности выполнения действий, воспитанию умения планировать деятельность, доводить любую работу до конца, формированию навыков самоконтроля.
В ходе формирования практических умений и навыков развиваются внимание, память, наблюдательность, совершенствуются моторика, тактильные и зрительные ощущения. Все это служит решению задач коррекции как познавательной деятельности, так и личностных качеств школьников с нарушением интеллекта.
В процессе знакомства с единицами измерения величин у учащихся расширяются представления о числе. Они убеждаются, что числа получаются не только от пересчета предметных совокупностей, но и в результате измерения величин.
Изучение этого материала способствует лучшему пониманию закономерностей десятичной системы счисления (соотношение единиц измерения величин, кроме единиц измерения времени, основано на десятичной системе счисления), расширению понятий арифметических действий (арифметические действия можно производить и над числами, записанными с употреблением единиц измерения величин, законы арифметических действий над числами, полученными от пересчета предметных совокупностей, остаются справедливыми и для чисел, полученных от измерения). Производя действия над числами, учащиеся закрепляют навыки предварительного анализа задания, вычленяют черты сходства и различия в действиях с различными (по виду) числами.
Изучение данной темы позволяет тесно связать преподавание математики с жизнью: учащиеся получают практические умения и навыки измерения, необходимые как в повседневной жизни, так и при овладении будущими профессиями, учатся правильно пользоваться измерительными инструментами — линейкой и рулеткой (устанавливать линейку, вести отсчет единиц измерения от нуле-
243
вого деления линейки, а также от любого другого деления), веса ми (уравновешивать весы, производить взвешивание на чашечны/ весах, циферблатных весах со стрелкой), часами (определят! время по часам с точностью до минуты) и т. д.
Данная тема, несмотря на большую по сравнению с другими разделами математики конкретность, трудна для учащихся вспомога тельной школы. У учащихся как младших, так и старших классов нет реальных представлений о единицах измерения величины, на блюдается смешение единиц измерения одной и той же величины (сантиметра с дециметром и метром) и разных систем мер (метра с квадратным метром, а иногда и с килограммом). Учащиеся путают единицы измерения и измерительные инструменты.
Плохое знание единиц измерения величин и неумение различать их создают большие трудности при установлении соотношения мер.
При изучении данной темы учащиеся допускают самые разнообразные ошибки. Например, при выполнении действий с числами, полученными от измерения, наименования не принимаются во внимание (5 м+6 см=65), в записи этих чисел переставляются местами единицы мер (4 м 40 км), часто при выполнении действий записываются случайные наименования (125x80=10 бОО кв. м=1000 р.).
Главной причиной этих ошибок является отсутствие конкретных представлений о размерах каждой единицы измерения.
Для школьников с нарушением интеллекта также характерна неточность измерений. Это вызвано непониманием значения точности измерения в практике, неумением правильно установить инструмент, выбрать соответствующую единицу измерения, произвести отсчет по шкале измерительного инструмента (линейки, весов, циферблатов часов), правильно записать результат измерения.
Для преодоления указанных трудностей необходимо руководствоваться следующими требованиями:
В младших классах надо стараться сформировать представле
ние, а в старших — понятие о том, что величину можно измерить
только такой же величиной, принятой за единицу измерения
(длина измеряется мерами длины: метрами, дециметрами и т. д.)
Знакомство с новой единицей измерения целесообразно на
чинать с создания такой жизненной ситуации, которая бы помога
ла учащимся убедиться в необходимости введения той или иной
единицы измерения величины.
244
3. Нужно стремиться (учитывая слабость воображения, малый практический опыт, конкретность мышления умственно отсталых), чтобы учащиеся ощутили, четко представили каждую единицу измерения, используя все органы чувств. Надо шире использовать Наблюдения, опыт, знание уж известных единиц измерения.
Например, при знакомстве с мерой длины 1 км использовать знание 1 м, пройти с учащимися расстояние 1 км и отметить ; затраченное время.
, Меры, которые трудно или невозможно ощутить (например, массу грузов в 1 ц или в 1 т), надо показать опосредованно, Приводя примеры использования этих мер.
, 4. Изучение мер должно сопровождаться активной практической деятельностью самих учащихся: а) по изготовлению единиц измерения (метра, дециметра, сантиметра, миллиметра, квадратных и кубических мер); б) по измерению величин с помощью инструментов; в) по выяснению соотношения мер (в дециметре укладывать сантиметры, метр делить на дециметры и сантиметры, приходя к выводу: 1 дм = 10 см, 1 м=10 дм=100 см).
При изучении данной темы учащиеся должны получить представление о размерах некоторых наиболее часто встречающихся в их опыте и опыте других людей предметов, знание которых поможет им лучше ориентироваться в окружающей жизни, подготовит к участию в доступной им трудовой деятельности. Например, учащиеся должны знать средний рост ребенка их возраста, средний рост взрослого человека, длину и ширину тетради, классной доски, высоту, длину и ширину класса, длину карандаша, среднюю длину шага, высоту стола, стула, массу одного яблока, картофелины, буханки хлеба, батона, мешка картофеля (зерна, муки), среднюю массу человека, грузоподъемность машины, вместимость ведра, молочных бидонов, среднюю скорость пешехода, лошади, автомашины, поезда, самолета, уметь показать примерные размеры 1 см и 1 м.
5. Изучение мер должно сопровождаться развитием глазомера и мускульных ощущений. Кроме того, учащиеся должны приобрести умение оценивать приближенные результаты измерений (если остаток меньше половины единицы измерения, то он отбрасывается; если остаток равен или больше половины единицы измерения, то к полученным целым единицам мер добавляется еще одна единица, например: 1 м 30 см«1 м, 1 м 50 см«2 м, 1 м 80 см=2 м).
245
6. Закрепление знаний мер и умения измерять проводится
только на уроках математики, но и на других учебных предмета!
особенно на уроках ручного и профессионального труда, физкул|
туры, черчения, при работе на пришкольном участке, на произвс
ственной практике, а также во внеклассное время. Успех
зависит от целенаправленной работы всех учителей и воспитач
лей, работающих с одним коллективом учащихся.
Измерению с помощью инструментов для определения точн|
го значения размеров предметов должно предшествовать опред^
ление этих размеров на глаз. Это разовьет глазомер, закреп»
представление о единицах измерения, укрепит знание назван!
единиц измерения величин, предупредит их уподобление.
Формирование навыков у детей с нарушением интеллект
происходит очень медленно, и требуется большое количество у]|
ражнений на протяжении долгого времени, чтобы сформировал
тот или иной навык. Поэтому упражнения в измерении необход
мо проводить систематически. Они должны быть неотъемлемо!,