Методика преподования математики. Предисловие рецензенты доктор педагогических наук, профессор Н. М. Назарова кандидат педагогических наук В. В. Эк Перова М. Н
Скачать 4.24 Mb.
|
218 Затем определяют количество единиц в каждом разряде. Толь-после этого учащиеся записывают четырехзначные числа в .традь, отделяя единицы тысяч от класса единиц небольшим нтервалом: 1275. Большое внимание уделяется работе со счетами: учащиеся от-|Кладывают числа на счетах, называют их. Проводится запись чисел под диктовку; например, предлагается записать число, кото- ||>ос состоит из 3 тыс. 7 сот. 5 дес. 6 ед. Когда учащиеся усвоят запись полных четырехзначных чисел, Можно переходить к образованию и записи неполных четырех-эпачных чисел. Приведем виды заданий: «Возьмите 1 тысячу палочек, 3 сотни палочек и 2 десятка палочек. Сколько всего палочек?» «Отложите 1 тыс. 3 сот. 2 дес. на счетах. Какое число вы отложили? Сколько в этом числе разрядов? Назовите их. Запишите- это число. Единицы какого разряда равны нулю?» После образования и записи четырехзначных чисел, в которых пулю равно число единиц одного разряда (1230, 2405, 7048), можно перейти к образованию и записи четырехзначных чисел, в которых нулю равно число единиц двух разрядов (1007, 1070). Дается задание: «Отложите на счетах 1 тыс. и 7 ед. Запишите это число в разрядную сетку, а затем в тетрадь». Важно, чтобы учащиеся сами составляли числа, в которых число единиц одного или нескольких разрядов равно нулю. Поэтому полезны задания: «Составьте четырехзначное число, в котором число сотен или десятков равно нулю» и т. д. Необходимо давать задания на выкладывание такого числа на абаке и запись его в разрядной сетке, на откладывание этого числа на счетах, замену соответствующего числа единиц низшего разряда высшим и, наоборот, раздробление высших разрядов в низшие (5999+1=6000). Для лучшего понимания и закрепления десятичного состава чисел проводятся упражнения на разложение числа на разрядные слагаемые и составление, запись или называние числа из разрядных слагаемых. Тесно с нумерацией связано изучение мер длины и массы. Учащиеся узнают, что в километре содержится 1000 м, в метре — 1000 мм, в 1 кг — 1000 г, в 1 т — 1000 кг. 219 Проводятся упражнения, в которых требуется выразить едши-цы крупных мер в единицах мелких и, наоборот, единицы мелки мер — в единицах крупных. Это способствует закреплению нум( рации. Обязательно сравниваются числа отвлеченные и с наименонп ниями вида: 3 км 750 м и 3750, 5600 и 5 кг 600 г и др. Аналогично изучается нумерация в пределах 100 000 и 1 000 000. При изучении нумерации в пределах 100 000 в 7-м класс <• учащиеся получают понятие о классах. Сначала повторяются разряды, с которыми учащиеся уже зня комы, определяется место каждого из них в числе. Учащимся сообщается, что для удобства чтения и записи чисе.м три первых разряда (единицы, десятки и сотни) объединены м класс. Этот класс называется классом единиц, а так как он стой: справа на первом месте, то его еще называют первым классом. За классом единиц стоят три следующих разряда (4-й, 5-й, 6-й). которые имеют такие же названия: единицы, десятки и сотни, но к названию каждого из этих разрядов прибавляется название класса тысяч: единицы тысяч, десятки тысяч, сотни тысяч. Эти три разряда составляют класс тысяч, и так как он стоит ни втором месте, то его называют вторым классом. Первый класс — класс единиц — имеет три разряда: единицы, десятки, сотни. Второй класс — класс тысяч — тоже имеет три разряда: единицы тысяч, десятки тысяч, сотни тысяч. Перед учащимися демонстрируется таблица классов и разрядов.
. 3) Счет по 1 тысяче до 10 тысяч, а запись этих чисел с [•именованием «тысяча» (кратко «тыс.») вместо нулей: 1 тыс., И.1С., 3 тыс., ..., 9 тыс., 10 тыс., или 1 дес. тысяч. Далее счет и •нелогичная запись десятками тысяч до 100 тыс.: 10 тыс., 20 тыс., |(| тыс., ..., 90 тыс., 100 тыс., или 1 сот. тыс. Наконец, счет сотнями тысяч и одновременно запись: 100 тыс., К) тыс., 300 тыс., ..., 900 тыс., 1 миллион. Необходимо показать, что название круглых чисел в классе единиц и в классе тысяч одинаковые, только во втором классе к Названию круглых чисел добавляется название класса (тысяч), а к круглым числам I класса название класса (единиц) не добавляется. Круглые числа надо отложить на счетах, на абаке и сравнить с числами I класса. Например, 2 ед, — 2 тыс., 5 ед. — 5 тыс., 2— 20 — 20 тыс., I б — 50 — 500 и 500 тыс. Учитель знакомит учащихся с таблицей классов и разрядов и вписывает отложенные на счетах числа в эту таблицу.
II вариант. Нумерация чисел в пределах 1 000 000 (класс тысяч) Методика изучения. Последовательность: 1) повторение нумерации в пределах 1000, закрепление названий разрядов (единицы, десятки, сотни) и класса (единиц). 2) Образование тысячи (1 тыс. это 1000 «диниц, 1 тыс. — это 10 сотен, 1 тыс. — это 1000 десятков). 220 Затем вместо слова «тыс.», они записывают 3 нуля: 2 и 2000, 50 и 50 000, 400 и 400 000, 1 000 000. Когда учащиеся научатся записывать круглые тысячи, десятки и сотни тысяч, учитель с помощью таблицы, а потом без нее, учит записывать и читать 5-ти и 6-ти значные числа вида: 46 тыс., 46 000, 465 тыс. и 465 000, т. е. сначала записывает название класса, а затем число пишется с нулями. После этого записываются полные четырехзначные, потом пятизначные и шестизначные числа. Учитель называет эти числа, обращает внимание учащихся на количество цифр (знаков) 221 в числе, и это количество можно сразу обозначить точками. I' пример: «Записать число 368. Сколько знаков (цифр) в чис Ставим три точки. А теперь надо записать 1 368. Сколько знг добавилось? Сколько точек надо поставить?» Проговаривайте число и пишите. При записи 4-х, 5-ти, 6т значных чисел необходимо делать интервал, чтобы отделить кл;к •• единиц от класса тысяч ( ). После этого учащиеся упражняют ся в записи и чтении неполных многозначных чисел с одним» двумя, а затем и несколькими нулями в середине или на конце числа. Проводятся упражнения, формирующие умения анализиро вать числа по десятному составу, раскладывать числа на классы и разрядные слагаемые, определять место числа в числовом ряду, считать разрядными единицами в прямой и обратной последова тельности числового ряда и т. д. Виды упражнений Важно, чтобы учащиеся сравнивали числа не только разностно, но и кратко, т. е. могли узнать, во сколько раз надо увеличить 5, чтобы получить 50, 500, 5000. Полезны упражнения на счетах и на абаке на замену крупных разрядных единиц более мелкими и наоборот. Например, в числе 5000 надо заменить единицы тысяч сотнями, десятками, единицами. Возьмем 1 тыс. и заменим ее сотнями — будет 10 сот., а всего 4 тыс. 10 сот., затем возьмем 1 сот. и заменим ее десятками — будет 4 тыс. 9 сот. 10 дес., наконец, 1 дес. заменим 10 единицами — будет 4 тыс. 9 сот. 9 дес. 10 ед. Эти упражнения готовят учащихся к выполнению действий с переходом через разряд. Так же как и при изучении нумерации в пределах 1000, закрепляется понятие о числе единиц в отдельных разрядах и об общем количестве единиц, десятков, сотен в числе. Эта тема остается по-прежнему трудной для учащихся. Она требует большого количества упражнений. Для ответа на вопрос: «Сколько единиц в числе?» — учащиеся должны посмотреть на разряд единиц и указать количество единиц в нем, а для ответа на вопрос: «Сколько всего единиц в числе?» — они должны показать все число. На вопрос: «Сколько десятков в числе?» — ученики должны показать разряд десятков и назвать количество десятков в нем, а на вопрос: «Сколько всего десятков в числе?» — они должны подсчитать десятки в числе 1275 так: 1000 — это 100 десятков, 200 — это 20 десятков, 70 — это 7 десятков. Значит, в числе 222 г,'75 содержится 127 десятков. Чтобы узнать, сколько всего де-| нтков в числе, нужно отбросить в нем единицы, а чтобы узнать, | колько всего сотен в числе, надо отбросить две цифры (единицы II десятки). Полезны упражнения в которых требуется дифференциация вопросов, например: «Подчеркните в числе разряд десятков; подчеркните общее число десятков. В числе 5370 сколько десятков?» (Ученик подчеркивает цифру 7.) «В числе 5385 сколько всего десятков?» (Ученик подчеркивает число 538.) Обратное задание: «Количество каких единиц подчеркнуто в числах 1238, 1720?» Начертить таблицу «Классов и разрядов» в тетрадях и вписать и нее числа 736 и 736 тысяч. Эти два числа ученики сравнивают, анализируя их. Числа записаны одинаковыми цифрами, в этом их сходство. Но место цифр в числах неодинаково. 736 — это число первого класса; 736 тысяч — это число второго класса. Если эти числа записать без таблицы, то вместо единиц разрядов первого класса, которые равны нулю, в числе 736 тысяч надо записать три нуля: 736 000. Читать многозначное число нужно поклассно. Сначала читаются числа второго класса, затем числа первого класса: 37 835 — 37 тысяч 835. Так же сравниваются числа 55 и 55 000, 50 и 50 000. Приведем еще несколько видов заданий: записать число, которое состоит из 75 тысяч 470 единиц. Назвать классы и разряды этого числа; написать и прочитать числа, состоящие: а) из 3 единиц и 8 десятков первого класса и 7 единиц второго класса; б) из 6 единиц первого разряда первого класса и 3 единиц второго разряда второго класса; прочитать числа 5075, 4208, 3009, 58 000, 700 040 и указать, единицы каких разрядов и классов в них равны нулю. При чтении этих чисел надо обратить внимание учащихся на то, что если единицы какого-либо разряда равны нулю, то они не читаются. Есть разница в записи и чтении чисел, имеющих разряды, равные нулю: читается 700 тысяч 40, а записывается 700 040. Поэтому проводятся специальные упражнения на чтение и запись многозначных чисел. Необходимы упражнения и на нахождение наибольшего и наименьшего числа каждого разряда и класса. 223 Учащиеся уже знают, что наименьшим однозначным чис; является 1, а наибольшим — 9. Наименьшим двузначным чис; является 10, а наибольшим — 99, наименьшим трехзначным ч| лом — 100, а наибольшим — 999. При изучении четырехзначк чисел надо показать, что 1000 — наименьшее четырехзначк число, так как если от 1000 отнять единицу, то получим 999, .. ( число трехзначное. Наибольшим четырехзначным числом являете 9999, так как если прибавить 1, то получится пятизначное чис 10 000. Таким же образом учащиеся получают понятие о найме! шем и наибольшем пятизначном (10 000 и 99 999) и шестизн;. ном (100 000 и 999 999) числе. Важно, чтобы учащиеся не прос запоминали наибольшее и наименьшее число того или иного р; ряда или класса, но и могли это доказать, опираясь на основы, свойство чисел натурального ряда. Поэтому, предъявляя задание назвать наибольшее пятизначное число, учитель одновременно спрашивает: «Как доказать, что 99 999 — наибольшее пятизначное число?» С темой «Нумерация» тесно связано решение примеров вида | 3746+1, 3747-1, 24 799+1, 60 000-1. Оно основано на знании свойства натурального ряда чисел. Эти действия выполняются устно. Решение примеров вида 36 тыс.+ 12 тыс., 37 тыс. —14 тыс., 2000+300, 2300+20, 2320+7, 2300-300, 2320-20, 2327-7, 2327-327, 2327-200, 70 тыс.+500 тыс., 70 тыс.+5 дес., 70 тыс.+ 7, 2327—327 и т. д. основано на знании образования многозначных чисел и выполняется устно. Выполняя действия, учащиеся должны проводить анализ чисел. Например: 35 000+700. Первое слагаемое содержит 35 ед. II класса, а второе слагаемое — 700 ед. I класса. Сумма 35 ед. II класса и 700 ед. I класса — 35 700. Ответ записывается в таблицу разрядов и классов, откладывается на счетах. Устно решаются примеры на умножение и деление вида 24 тыс.-2; 48 тыс.:4; 140 тыс.-3; 720 тыс.:9; найти ^ от 250 тыс. Их решение сводится и случаям табличного и внетабличного умножения и деления. Упражнения на закрепление нумерации, а также арифметические выражения указанных выше видов, т. е. те, которые выполняются приемами устных вычислений, включаются в устный счет, а многозначные числа, которые трудно воспринимаются учащимися только на слух, записываются на карточках, на доске, отобража-224 на экране с помощью кодоскопа или других технических 1ств, с тем чтобы включить для их восприятия, кроме слухово-ги зрительный анализатор. |