Тец руководство. Руководство к практаческим занятиям по медицинской микробиологии, вирусологии и иммунологии под редакцией
Скачать 2.14 Mb.
|
Тема 7.1. МЕТОДЫ ОЦЕНКИ АНТИМИКРОБНОГО ДЕЙСТВИЯ ХИМИЧЕСКИХ И ФИЗИЧЕСКИХ ФАКТОРОВ Введение. Асептика — система мероприятий, предупреждающих внесение (попадание) микроорганизмов из окружающей среды в ткани или полости человеческого организма при лечебных и диагностических манипуляциях, а также в материал для исследования, в питательные среды и культуры микроорганизмов при лабораторных исследованиях. Асептика предусматривает соблюдение особых санитарно-гигиенических правил и приемов работы, а также специальную обработку инструментов, материалов, рук медицинских работников, помещений и т.д. с целью частичного (дезинфекция) или полного (стерилизация) уничтожения микробов. Антисептика — комплекс лечебно-профилактических мероприятий, направленных на уничтожение микроорганизмов, способных вызвать инфекционный процесс, на поврежденных участках кожи и слизистых оболочек, путем обработки микро-бицидными веществами — антисептиками. Стерилизация — полное уничтожение микроорганизмов, включая вегетативные формы и споры. Существуют 3 основные группы методов стерилизации: физические, механические и химические. Выбор метода, используемого для решения практической задачи, зависит от стерилизуемого объекта. Дезинфекция — обеззараживание объектов окружающей среды. В отличие от стерилизации дезинфекция приводит к гибели большинства, но не всех форм микробов и, таким образом, обеспечивает только снижение микробной контаминации (загрязнения), а не полное обеззараживание объекта. Поэтому предметы, подвергшиеся дезинфекции, не являются абсолютно безопасными. План Программа Асептика, антисептика и дезинфекция. Антисептики и дезинфектанты. Антимикробное действие физических и химических факторов. Методы стерилизации; аппаратура, используемая для стерилизации. Методы контроля эффективности стерилизации, действия антисептических и дезинфицирующих веществ. Демонстрация 1. Аппаратура, используемая при стерилизации: автоклав, сушильный шкаф, аппаратура для фильтрации и УФ-облучения. Задание студентам Учесть результаты опытов, поставленных с бактериальными тест-объектами для контроля эффективности стерилизации, проведенной путем кипячения и автоклавирования. Сделать заключение. Определить по готовым посевам антибактериальное действие УФ-лучей на стафилококки и кишечную палочку. Учесть результаты опытов, поставленных для определения антимикробного действия антисептических и дезинфицирующих веществ. Сделать заключение. Методические указания • Методы стерилизации I. Физические методы. Воздействие высоких температур. Высокая температура обладает микробицидным действием благодаря способности вызывать денатурацию важнейших биополимеров, в первую очередь белков. Стерилизация сухим жаром в сушильно-стерилизационном шкафу (печи Пастера) основана на бактерицидном действии нагретого до 165—170 °С воздуха в течение 45 мин. При более высокой температуре происходит обугливание ватных пробок, бумаги, в которую завернута посуда, а при более низкой температуре требуется большой срок стерилизации. Сухим жаром стерилизуют стеклянную посуду (чашки Петри, пробирки, пипетки и др.).
меняют ограниченно, например для стерилизации бактериологических петель, препаровальных игл, пинцетов. Воздействие ионизирующих излучений. Микроби-цидное действие ионизирующих излучений основано на их способности вызывать повреждения в молекуле ДНК. Для стерилизации одноразовых медицинских инструментов и бактериологического оборудования, чувствительного к термическим воздействиям (пластиковая посуда для культивирования микробов и клеточных культур, пластиковые шприцы, системы переливания крови и т.д.), обычно применяют стерилизацию у-изл учением. II. Механические методы. Основаны на фильтровании через специальные мембранные фильтры с малым размером пор, способные механически задерживать микроорганизмы. В лабораторной практике широко применяют бумажные и полимерные фильтры. Существуют фильтры с порами различных, строго откалиброванных размеров, что позволяет гарантированно очищать материал не только от бактерий, но и вирусов, а при необходимости и от некоторых макромолекул. Фильтрование используют для стерилизации жидких материалов, не выдерживающих нагревания (сыворотка крови, растворы антимикробных препаратов, компоненты питательных сред для бактерий и культур клеток), для получения бактериальных токсинов и других продуктов жизнедеятельности бактерий. Фильтрование является ведущим методом стерилизации воздуха в тех случаях, когда это необходимо. Для этого воздух пропускают через фильтры, пропитанные микробицидными веществами. Такие системы стерилизации применяют, например, в настольных боксах для работы с возбудителями особо опасных инфекций, а также в операционных блоках, родильных отделениях и т.д. III. Химические методы. Основаны на обработке объекта химическими веществами, обладающими микробицидным действием и способными при соблюдении определенных режимов воздействия обеспечить полное уничтожение микрофлоры. Химическую стерилизацию обычно применяют для обработки различных приборов и инструментов многоразового использования, чувствительных к высоким температурам (фиброоптические приборы, медицинские имплантаты и др.). К стерилизу ющим агентам относятся окись этилена, перекись водорода, глютаровый альдегид, пероксиуксусная кислота, двуокись хлора. Независимо от метода во всех случаях требуется регулярный контроль эффективности процедуры стерилизации. С этой целью используют биологические индикаторы — известные микроорганизмы, наиболее устойчивые к данному способу обработки (например, споры Bacillus stearothermophilus для контроля эффективности автоклавирования, Bacillus subtilis — для контроля сухожаровой стерилизации). Существуют также физико-химические индикаторы — вещества, которые претерпевают видимые изменения (изменяют цвет, агрегатное состояние и т.д.) только при соблюдении правильного режима обработки. • Методы дезинфекции Для дезинфекции применяют физические и химические методы. I. Физические методы. Воздействие высоких температур. Кипячение. Шприцы, мелкий хирургический инструментарий, предметные и покровные стекла и некоторые другие предметы помещают в стерилизаторы, в которые наливают воду. Для устранения жесткости и повышения температуры кипячения к воде добавляют 1—2 % раствор бикарбоната натрия. Кипячение производят не менее 30 мин. При кипячении некоторые вирусы (например, вирус гепатита В) и споры бактерий сохраняют жизнеспособность. Пастеризация основана на антибактериальном действии температуры в отношении вегетативных клеток, но не бактериальных спор. Нагревание материала производится при температуре 50—65 °С в течение 5—10 мин с последующим быстрым охлаждением. Обычно пастеризуют напитки и пищевые продукты (вино, пиво, соки, молоко и др.). Воздействие ионизирующих излучений. Ультрафиолетовое излучение (УФ) с длиной волны 260—300 мкм обладает достаточно выраженным микробицидным действием, однако некоторые виды микробов и споры резистентны к УФ. Поэтому УФ-облучение не способно обеспечить полного уничтожения микрофлоры — стерилизацию объекта. Обработку УФ обычно используют для частичного обеззараживания (дезинфекции) крупных объектов: поверхностей предметов, помещений, воздуха в медицинских учреждениях, микробиологических лабораториях и т.д. Гамма-излучение обладает выраженным микробицидным действием на большинство микроорганизмов, включая вегетативные формы бактерий и споры большинства видов, грибы, вирусы. Применяют для стерилизации пластиковой посуды и медицинских инструментов одноразового использования. Следует иметь в виду, что обработка гамма-излучением не обеспечивает уничтожения таких инфекционных агентов, как прионы. И. Химические методы. Это обработка объекта дезинфектан-тами — микробицидными химическими веществами. Некоторые из этих соединений могут оказывать токсическое действие на организм человека, поэтому их применяют исключительно для обработки внешних объектов. В качестве дезинфектантов обычно используют перекись водорода, хлорсодержащие соединения (0,1—10 % раствор хлорной извести, 0,5—5 % раствор хлорамина, 0,1—10 % раствор двутретьеосновной соли гипохлората кальция — ДТСГК), формальдегид, фенолы (3—5 % раствор фенола, лизола или карболовой кислоты), йодофоры. Выбор дезинфицирующего вещества и его концентрации зависят от материала, подлежащего дезинфекции. Дезинфекция может быть достаточной процедурой для обеззараживания только таких медицинских инструментов, которые не проникают через естественные барьеры организма (ларингоскопы, цистоскопы, системы для искусственной вентиляции легких). Некоторые вещества (борная кислота, мертиолат, глицерин) применяют как консерванты для приготовления лечебных и диагностических сывороток, вакцин и других препаратов. • Методы антисептики В качестве антисептиков используют только малотоксичные для организма соединения, оказывающие антимикробное действие. Наиболее часто применяют 70 % этиловый спирт, 5 % раствор йода, 0,1 % раствор КМп04, 0,5—1 % спиртовые растворы метиленового синего или бриллиантового зеленого, 0,75—4,0 % раствор хлоргексидина, 1—3 % раствор гексахло-рофена и некоторые другие соединения. Антимикробные вещества добавляют также к материалам, используемым при изготовлении перевязочных средств, лейкопластырей, зубных протезов, пломбировочных материалов и т.п. с целью придания им бактерицидных свойств. Методы контроля эффективности стерилизации, действия антисептических и дезинфицирующих веществ. Изучение антибактериального действия высоких температур. В пробирки с питательным бульоном поместить шелковые нити, смоченные смесью спорообразующей (3 пробирки) и неспорообразующей (3 пробирки) культур. По одной пробирке с каждой культурой подвергнуть автоклавированию или кипячению; контрольные пробирки никакому воздействию не подвергать. После обработки все посевы выдержать в термостате при 37 °С в течение 24 ч. Отметить результат поставленного опыта и сделать заключение. Контроль стерильности перевязочного материала и хирургических инструментов. Проводят посев исследуемых образцов (или смывов с поверхности крупных инструментов) на три среды: сахарный бульон, тиогликолевую среду и жидкую среду Сабуро. Посевы инкубируют в термостате 14 дней. При отсутствии роста во всех посевах материал считают стерильным. Изучение антибактериального действия УФ-лучей. Суспензию стафилококка или E.coli в изотоническом растворе хлорида натрия в объеме 1 мл поместить на расстоянии 10—20 см от центра лампы. Облученную и необлученную (контроль) суспензии бактерий засеять в питательный бульон и инкубировать при 37 °С в течение 16—24 ч, после чего оценить результаты: отсутствие помутнения среды связано с гибелью облученной культуры бактерий, в контроле отмечается помутнение, что свидетельствует о наличии роста. Определение антимикробного действия антисептических и дезинфицирующих средств. 1. Подготовить два вида тест-объектов: а) шелковые нити, смоченные культурой E.coli; б) шелковые нити, смоченные спорообразующей культурой (с большим содержанием спор). Нити поместить в растворы фенола (5 %), лизола (5 %), хлорной извести (10 %) на 5 и 60 мин, после чего отмыть от исследуемых веществ, засеять в питательный бульон и поместить в термостат до следующего дня. Контрольные пробы действию химических веществ не подвергать. Отметить результат поставленного опыта и сделать заключение. 2. Диски из фильтровальной бумаги смочить растворами исследуемых веществ и поместить на поверхность питательного агара в чашке Петри, засеянной (газоном) тест-культурой стафилококка или кишечной палочки. Чашку инкубировать в течение суток при 37 °С. Об антибактериальном действии исследуемых веществ судят по диаметру зон задержки роста бактерий, образующихся вокруг дисков. Тема 7.2. МЕТОДЫ ОЦЕНКИ ЭФФЕКТИВНОСТИ ДЕЙСТВИЯ АНТИМИКРОБНЫХ ПРЕПАРАТОВ Введение. Антимикробные препараты (природные и синтетические антибиотики) используются для лечения заболеваний, вызванных микроорганизмами. Для эффективной терапии необходим подбор препарата, обладающего наибольшей активностью по отношению к данному возбудителю инфекции и оказывающего наименьший вред нормальной микрофлоре человека. Широкое распространение бактериальных штаммов, обладающих различной степенью устойчивости ко многим препаратам (поли-резистентностью), делает особенно актуальными качественную (метод дисков) и количественную (метод серийных разведений) оценку чувствительности бактерий к лечебным препаратам. План Программа Спектры действия основных групп антимикробных препаратов. Оценка действия на бактерии антимикробных препаратов методом дисков. Определение минимальной ингибирующей концентрации (МИК) антимикробных препаратов методом серийных разведений. Демонстрация 1. Антимикробные препараты различных групп. 77 Стандартные бумажные диски, пропитанные антимикробными препаратами, для определения чувствительности к ним бактерий. Таблицы и схемы антимикробных спектров важнейших групп антибиотиков и механизмы их антибактериального действия. Задание студентам Поставить опыт по определению чувствительности стафилококков к различным антибиотикам методом дисков. По результатам поставленного опыта определить минимальную ингибирующую концентрацию пенициллина для различных бактериальных культур методом серийных разведений. Методические указания Количественное определение чувствительности бактерий к антимикробным препаратам методом серийных разведений. Данный метод применяют для определения минимальной подавляющей концентрации (МПК) — наименьшей концентрации антибиотика, полностью подавляющей рост исследуемых бактерий. Готовят основной раствор антибиотика, содержащий препарат в определенной концентрации (мкг/мл или ЁД/мл) в физиологическом или буферном растворе или в специальном растворителе. Основной раствор используют для приготовления серийных (2-кратных) разведений антибиотика в питательной среде — бульоне (в объеме 1 мл) или агаре. Из исследуемой бактериальной культуры готовят суспензию стандартной плотности и засевают по 0,1 мл на среды с разной концентрацией антибиотика, а также на среду без препарата (контроль культуры). Посевы инкубируют при 37 °С 20—24 ч или более (для медленно растущих бактерий), после чего отмечают результаты опыта по помутнению питательного бульона или появлению видимого роста бактерий на агаре, сравнивая с контролем. Наименьшая концентрация антибиотика, полностью подавляющая рост исследуемой культуры, принимается за МПК.
Микротест-системы для определения чувствительности к антимикробным препаратам. Микротест-системы предназначены для быстрого определения клинической чувствительности к антибиотикам бактерий определенных видов или родственных групп. Тестируемые препараты в стандартных концентрациях находятся в лунках готовых пластиковых планшетов. Определяют чувствительность исследуемой культуры к двум концентрациям каждого антибиотика: средней терапевтической и максимальной. Материал из изолированной колонии с помощью мерной бактериологической петли (объем 1 мкл) вносят в 5 мл стандартной питательной среды, содержащей индикатор, и готовят суспензию. Готовую бактериальную суспензию разливают в лунки планшета по 0,1 мл и инкубируют при оптимальных для данного вида бактерий условиях температуры и газового состава среды. О росте бактерий судят по изменению цвета индикатора, что позволяет существенно сократить сроки исследования. Если бактерии сохраняют жизнеспособность в присутствии антибиотика, выделение продуктов метаболизма приводит к изменению цвета индикатора. Отсутствие изменения цвета свидетельствует о полном подавлении жизнедеятельности микроба. Результаты определяют через 4 ч инкубации с помощью спектрофотометра. Определение клинической чувствительности бактерий к антимикробным препаратам методом дисков (диффузионный тест). Метод основан на подавлении роста бактерий на плотной питательной среде под действием антибиотика, содержащегося в бумажном диске. В результате диффузии препарата в агар вокруг диска образуется градиент концентрации антибиотика. Размер зоны подавления роста зависит от чувствительности бактерии и свойств препарата (в частности, скорости диффузии в агаре). Для определения чувствительности в клинической практике применяют готовые стандартные диски со строго определенным содержанием антибиотиков. Содержание препарата определяется исходя из терапевтических концентраций каждого антибиотика и средних значений МПК для патогенных бактерий. Название препарата и его количество обозначено на каждом диске. Для определения чувствительности из исследуемой бактериальной культуры готовят взвесь, содержащую стандартное количество жизнеспособных клеток, и засевают газоном в чашки Петри (диаметр 100 мм) на среды Мюллера-Хинтон или АГВ (специальные среды, не препятствующие диффузии антимикробных веществ и не оказывающие на них негативного воздействия). Диски на засеянную поверхность накладывают с помощью аппликатора на расстоянии 2,5 см от центра чашки по кругу (рис. 7.2.1). На чашку помещают не более 5 дисков. Посевы инкубируют 18—20 ч при 35 °С. При корректном выполнении процедуры на фоне равномерного бактериального газона вокруг дисков образуются
Е-теста нанесена шкала значений МПК. При помещении полоски на поверхность агара регулируемый процесс диффузии обеспечивает создание в питательной среде вокруг полоски стабильного градиента концентрации препарата, соответствующего шкале. Процедура определения чувствительности с помощью Е-теста осуществляется аналогично тестированию методом дисков. После инкубации посева вокруг полоски образуется зона задержки роста, имеющая форму эллипса. Значение МПК соответствует месту пересечения эллипсовидной зоны с полоской Е-теста. Для интерпретации результатов (оценки клинической чувствительности) используют стандартные критерии (табл. 7.2.3). Глава 8 ЭКОЛОГИЯ МИКРООРГАНИЗМОВ Введение. Экология микроорганизмов является разделом общей микробиологии и изучает взаимоотношения микро- и макроорганизмов, совместно обитающих в определенных биотопах. В естественных средах обитания (почве, воде, воздухе, живых организмах) микробы входят в состав различных биоценозов. Экология микробов, вызывающих заболевания человека, определяется их способностью выживать во внешней среде, менять хозяев, сохраняться в организме хозяина на фоне действия иммунной системы, а также связана со способами их распространения, передачи и рядом других факторов. Оценка ряда экологических условий является одной из главных задач санитарной микробиологии. Санитарно-бактериологические исследования лежат в основе практической работы санитарных врачей и эпидемиологов при санитарно-гигиенической оценке объектов окружающей среды, пищевых продуктов, напитков и т.д. и играют ведущую роль в профилактике инфекционных болезней. Важным объектом изучения медицинской микробиологии является нормальная микрофлора организма человека, которая включает микробы, обитающие на кожных покровах, слизистых оболочках различных органов (полости рта, зева, носоглотки, верхних участков дыхательных путей, кишечника, особенно толстой кишки, и т.д.). Одни из них являются постоянными (облигат-ными) обитателями организма человека, другие — временными (факультативными или транзиторными). Нормальная микрофлора — это жизненно важная система организма, которая обеспечивает защиту от многих патогенных микробов, созревание и стимуляцию иммунной системы, продукцию ряда витаминов и ферментов, участвующих в пищеварении, и др. Качественный и количественный состав микрофлоры человека меняется в течение жизни и зависит от пола, возраста, характера питания и др. Кроме того, колебания в составе микрофлоры человека могут быть обусловлены возникновением заболеваний и применением лекарственных препаратов, прежде всего антибиотиков и иммуномодуляторов. Оценка качественного и количественного состава микрофлоры организма человека по определенным показателям позволяет выявить его нарушение (дисбактериоз) и связанные с ним последствия. 15>15>9>14>11>11>12>16>15>16>14>19>13>14>13>17>15>16>12>14>14>15>15>14>16>12>12>15>13>13>14>14>14>14>15>17>11>14>9>4>50>2>2>8>2>2>2>2>2>8>16>4>4>16>4>2>1>4>4>8>8>16>8>8>8>8>8>8>8>8>64>16>128>16>8>2>2> |