Пат физиология. Учебные пособия для студентов высших учебных заведений
Скачать 7.09 Mb.
|
Г л а в а 11. ПАТОЛОГИЧЕСКАЯ ФИЗИОЛОГИЯ ТКАНЕВОГО РОСТА Патологическим рост тканей становится тогда, когда он перестает отвечать физиологическим потребностям организма. Ауторегуляция клеточного деления, ауторепродукция клеток, пластическая, биохимическая природа внутриклеточной регенерации молекулярных структур обеспечивают нормальную функциональную активность органов и систем организма в целом. Однако контроль за этими процессами может быть нарушен, что приводит к количественным и качественным изменениям роста клеток. Координация клеточного деления многоуровневая, поэтому причиной патологически измененного роста клеточных элементов может быть нарушение нервной и гуморальной регуляции, генного механизма самой клетки, межклеточных взаимоотношений, недостаточность или избыток притока необходимых пластических компонентов, энергетических ресурсов и выведения метаболитов. В связи с этим рассматривают гипобиотические и гипербиотические процессы. К гипобиотическим процессам относят атрофию — прижизненное уменьшение объема клеток, органов, тканей в результате снижения питания (общего или конкретной ткани), дистрофию, обусловленную расстройством обменных процессов. К гипербиотическим процессам относят гипертрофию — увеличение органа в объеме за счет возрастания массы отдельного клеточного элемента; гиперплазию — увеличение органа в объеме за счет размножения клеточных элементов; опухолевый рост, характеризующийся беспредельностью и относительной автономностью. 11.1. ГИПОБИОТИЧЕСКИЕ ПРОЦЕССЫ Гипобиотические процессы обусловлены снижением обеспеченности питательными веществами всего организма или отдельных, конкретных тканевых структур под влиянием внешних и внутренних факторов. Атрофия (от греч. а — отрицание, trophe — питание) — уменьшение тканей, органов в объеме в результате недостатка снабжения питательными веществами их энергетических элементов. В зависимости от причин различают физиологическую и патологическую атрофии. Физиологическая атрофия присуща животным всех возрастов. Например, с возрастом атрофируются тимус, половые железы животных. Патологическая атрофия может быть общей (алиментарное истощение животных) и местной. Местная атрофия может иметь следующее происхождение:
Уменьшение массы органа не всегда связано с атрофией. После рождения орган может не достигать полного развития — гипоплазия; может полностью отсутствовать — агенезия; сохранять зачаточное состояние — аплазия. Эти явления связаны с нарушениями, возникающими в процессе онтогенеза. В последние годы особое внимание на себя обращает гипоплазия тимуса у новорожденных телят, поросят, ягнят, цыплят, других видов животных. Гипоплазия тимуса сопровождается функциональной недостаточностью этого центрального органа иммуногенеза — первичным иммунодефицитом. Гипотрофия (от греч. hypo — уменьшение, trophe — питание) молодняка — функциональная и морфологическая недостаточность клеток, тканей или всего организма вследствие неблагоприятных условий развития во внутриутробном периоде и после рождения. Во время плодоношения на организм матери и плода могут негативно влиять различные вредоносные факторы: количественное и качественное голодание; физические воздействия; биологические агенты — вирусы, микробы, гельминты, простейшие и их сочетания; кислородное голодание; аллергия; воспалительные процессы; нейроэндокринные изменения; этологические факторы — несоблюдение условий для реализации животными врожденных рефлексов (материнства, стадности, ранговости и др.); гиподинамия; транспортировка; производственные шумы; необоснованное применение животным лекарственных препаратов, многократные вакцинации; другие стрессогенные раздражители. При всей сложности генеза гипотрофии молодняка сущность ее развития сводится к недостаточному поступлению пластических и энергетических ресурсов от организма матери к развивающемуся плоду. В раннем постнатальном периоде дефицит массы гипотрофированного молодняка животных может достигать 30 % и более в сравнении со здоровыми (нормотрофиками). Физиологическая неполноценность гипотрофичного молодняка проявляется в недостаточном функционировании органов и систем. Их слизистые оболочки анемичны, двигательно-пищевые рефлексы и статические функции ослаблены, площадь опоры увеличена. Выявляются недостаточность специфических и неспецифических факторов защиты, высокая заболеваемость, низкая сохранность. Приобретенная гипотрофия может быть результатом переболевания гастроэнтеритом, бронхопневмонией, кокцидиозом, гельминтозами и др. Дистрофия (от греч. dys — расстройство, trophe — питание) — патологический процесс, характеризующийся нарушениями клеточного метаболизма, приводящими к структурным изменениям. Обменные процессы в клетке (ткани) обеспечиваются ее саморегулирующими системами и внеклеточными механизмами — микроциркуляцией, нейрогуморальной регуляцией. Поэтому нарушения трофики (дистрофия) могут быть разного происхождения:
Расстройства клеточного метаболизма сопряжены с патологической инфильтрацией веществ в клетку, их накоплением (гранулы жира при липидозах сердца, печени, почек), декомпозицией — нарушением ультраструктуры клеток; появлением в клетках необычных, неметаболизирующих веществ. По преимущественному нарушению обмена в клетках рассматривают жировую (липидоз), белковую (диспротеиноз), углеводную (слизистая, коллоидная), минеральную (кальциноз, петрификация) дистрофии. Дистрофия часто является морфологической основой функциональной недостаточности того органа, в котором она возникла. Так, при А-авитаминозе у животных наблюдают избыточное образование рогового вещества в ороговевающем эпителии дыхательных путей, кишечника, кожи. Снижается барьерная функция пораженных структур, развиваются воспалительные процессы, особенно опасные для молодняка. Исход дистрофии разного происхождения может быть двояким: если действие вызвавшей ее причины прекращается, то возможно восстановление структуры и функции ткани, однако в далеко зашедших случаях дистрофии завершаются некрозом клеток с соответствующими последствиями. У сельскохозяйственных животных наиболее часто наблюдают дистрофию алиментарного происхождения, связанную с недостаточным или неполноценным кормлением. Алиментарная недостаточность сопровождается нарушением обменных процессов в органах, избирательно реагирующих на недостающие компоненты рациона. Так, дефицит йода в рационе крупного рогатого скота ведет к дистрофии щитовидной железы; недостаток селена сопровождается дистрофией поперечнополосатых мышц у телят, ягнят, молодняка животных других видов (беломышечная болезнь); недостаток тиамина ведет к поражению нервных элементов и т.д. (Более подробно дистрофия описана в учебнике по патологической анатомии.) 11.2. ГИПЕРБИОТИЧЕСКИЕ ПРОЦЕССЫ Гипербиотические процессы могут рассматриваться как компенсаторно-приспособительные (гипертрофия, гиперплазия) и как сугубо патологические, характеризующиеся неограниченным, беспредельным ростом (опухоли). Гиперплазия (от греч. hyper — избыток, plasis — образование) — увеличение органа в объеме за счет размножения клеточных элементов. Определяющими факторами в развитии гиперплазии являются повышенная функциональная активность органа, воспалительные и регенераторные процессы, гормональное влияние. Гипертрофия (от лат. hyper — избыток, trophe — питание) — увеличение органа в объеме за счет нарастания массы отдельных функциональных единиц. Она может быть физиологической, например гипертрофия поперечнополосатых мышц при повышенной физической нагрузке. В таких случаях говорят об истинной гипертрофии. При повышении функциональной активности органа активируется синтез белка с последующим нарастанием энергообразующих, опорных и специфических структур. Усиливаются обменные процессы, возрастает число диктиосом в аппарате Гольджи и митохондрий в клетке. Основным стимулом частичной гипертрофии являются эффекторные нервно-гормональные влияния, индуцируемые рецепторами и нервными центрами при изменениях физиологических констант усиленно работающего органа. Биохимические процессы предшествуют морфологическим проявлениям гипертрофии. По этиологии и патогенезу различают следующие виды гипертрофии:
В некоторых случаях гипертрофия развивается за счет межуточной ткани, тогда ее называют ложной. Подобную картину можно наблюдать в начальной стадии цирроза печени, когда увеличение ее объема обусловлено разрастанием соединительной ткани, или при увеличении объема мышцы вследствие нарастания жировой ткани между мышечными волокнами. 11.3. РЕГЕНЕРАЦИЯ Регенерацией (от лат. regeneratio — возрождение) называется процесс восстановления разрушенных тканей или органов. Регенерация сопровождает жизнь животного организма с момента оплодотворения яйцеклетки до завершения жизнедеятельности. У нормального здорового животного непрерывно разрушаются и воспроизводятся молекулы, ферментные системы, органоиды клетки, сами клетки. Лейкоциты, например, живут около суток, эритроциты — около месяца. Такую регенерацию называют физиологической. Она не ограничивается воспроизведением клеток. Постоянная деструкция и обновление тканей сопровождаются важными для организма процессами образования секретов, таких, как молоко, кишечный сок, желчные пигменты, и др. Восстановление поврежденных биологических структур на разных уровнях их организации носит название патологической регенерации. В ответ на повреждение лучшую способность к регенерации проявляют низшие животные, и чем выше организация, тем регенерация слабее. Тем не менее у млекопитающих и птиц регенерируют после повреждения все тканевые структуры, но в разной степени. Значительной регенеративной способностью обладает эпителиальная ткань. Наивысшей способностью к регенерации, обусловленной травмой, обладает кожа. В ходе эволюции покровные ткани подвергались наибольшей травматизации со стороны внешней среды, поэтому заживление ран кожи — выражение приспособляемости, морфологической адаптации животных к повреждающим факторам. Эпителий кожи восстанавливается за счет пролиферации клеток глубокого зародышевого слоя. Слизистая оболочка желудочно-кишечного тракта, дыхательных путей обладает выраженной способностью к репаративному восстановлению. При остро текущих катарах эпителий может слущиваться с больших площадей и сравнительно быстро замещаться новым. Восстановление исходит из клеточных элементов крипт. Хорошо выраженной репаративной регенерацией обладают производные эпителиальной ткани — слюнные железы, печень, поджелудочная железа. Соединительная ткань способна к хорошо выраженной репаративной регенерации. Рыхлая клетчатка соединяет края ран, отгораживает очаг поражения от здоровых тканей, восполняет раневой дефект соединительнотканным рубцом, закрывающим ворота инфекции. В заживлении переломов костей основное значение имеют остеобласты, пролиферация которых восстанавливает поврежденные структуры. Остеокласты обеспечивают резорбцию поврежденной костной ткани, подавление избыточно разросшейся. Сравнительно быстро регенерируют фасции и сухожилия. Слабой регенераторной способностью обладают хрящевая и жировая ткань. Мышечная ткань регенерирует хуже эпителиальной и соединительной. Мышечные волокна скелетных мышц способны регенерировать после повреждения путем амитотического деления клеток. Может быть восстановлена поперечнополосатая исчерченность. В восстановлении функции поврежденной скелетной мышцы основное значение все же имеет гипертрофия. Репаративная регенерация гладких мышц возможна за счет митотического деления мышечных клеток, но осуществляется относительно слабо. Нервная ткань на повреждение реагирует неоднозначно. Повреждение клеток центральной нервной системы, нейронов спинного мозга, симпатических ганглиев завершается их гибелью. Аксоны же нервных клеток сохраняют способность к репаративной регенерации. Повреждение периферического нерва сопровождается дегенерацией и атрофией конца нерва, идущего к периферии. Регенерация начинается на конце аксона, связанного с нервной клеткой. Регенерирующий конец нерва врастает в трубочки и способен восстановить иннервацию. Если же аксон не совмещен с объектом врастания, то на его конце могут образоваться своеобразные утолщения — невромы, раздражение которых может причинить больному острую, трудно переносимую боль — каузалгию. Конечный этап регенерации — заживление ран. Оно начинается с заполнения дефекта фибрином, скопления лимфоцитов, освобождения биологически активных веществ — стимуляторов роста. Они вызывают размножение прежде всего эндотелиальных клеток, клеток адвентиции сосудов, малодифференцированных соединительнотканных элементов — фибробластов, являющихся источником коллагена, эластина, глюкозаминоглюканов. Заживление может осуществляться по пути первичного натяжения, например операционных ран, или по пути вторичного натяжения, когда рана инфицирована или слишком обширна. Домашние животные разных видов вне зависимости от силы, количества и природы раздражителя имеют свои особенности в регенерации поврежденных тканей. У парнокопытных животных (крупный рогатый скот, овцы, свиньи) и птиц происходит быстрая инкапсуляция, и заживление протекает преимущественно по первичному натяжению. У лошадей, других однокопытных заживление идет преимущественно вторичным натяжением. Регенерация характеризуется формированием капилляров из клеток эндотелия, адвентиции, гистиоцитов, фибробластов. Формируется грануляционная ткань — структурный и функциональный барьер, ограждающий организм от инфекционного начала и токсикоза (нередко у лошадей можно наблюдать избыточный рост грануляций — «дикое мясо», выходящий за пределы краев раны). Новообразованная ткань весьма кровоточива из-за обилия кровеносных сосудов. При заживлении вторичным натяжением эпителизации дефекта не происходит, на его месте образуется плотный соединительнотканный рубец. 11.4. ОПУХОЛЕВЫЙ РОСТ Под опухолью понимают патологическое разрастание тканей, характеризующееся относительной автономностью, беспредельностью роста и атипичностью. Опухоль (бластома — от греч. blastos — вырост, росток, оmа — опухоль; неоплазма — от греч. neos — новый, plasma — образование) — местное проявление общего заболевания, опухолевой болезни. Изучением причин, механизмов возникновения, диагностики, профилактики и лечения опухолей занимается онкология (от греч. onkos — опухоль, logos —учение). Онкология активно развивается благодаря усилиям врачей и представителей многих других специальностей — биологов, генетиков, химиков, физиков, математиков. Однако, несмотря на огромное внимание ученых и практиков к проблеме опухолей ввиду ее большой социальной значимости, до сих пор остаются недостаточно ясными механизм превращения нормальной клетки в опухолевую, бластомогенез в целом. Вместе с тем накоплен большой экспериментальный и клинический материал, позволяющий судить о современном состоянии учения об опухолях. Опухолевый рост отличается от нормального, других разновидностей патологичного разрастания тканей (гипертрофия, гиперплазия, репаративная регенерация) прежде всего автономностью. Рост опухоли не регулируется гомеостатическими системами организма. Вместе с тем она снабжается через сосуды пластическими и энергетическими элементами, а метаболиты выводятся и поступают в общий ток крови. Поэтому автономия опухолевой ткани относительна. Для опухоли характерна беспредельность роста. Начиная с одной единственной клетки или клона клеток, трансформированных в бластоматозные, опухоли растут «из самих себя». Клетки первичного зачатка размножаются до тех пор, пока организм не погибнет. Опухоли характеризуются атипичностью, т. е. совокупностью биологических свойств, отличающих их от исходных нормальных тканей, таких, как эпителиальная, соединительная, мышечные, нервная. Отличия касаются морфологии опухолевой ткани и составляющих ее клеток, физико-химических, биохимических, энергетических и иных свойств. Опухолевые клетки мало дифференцированы, по структуре и метаболическим особенностям они приближаются к эмбриональным, что получило название анапла-зии (от греч. anaplasis — обратное развитие). Атипизм морфологический касается тканей и клеток. Тканевый атипизм характерен тем, что опухолевые клетки не формируют нормальные тканевые структуры, хаотично расположены; в опухолевой ткани нарушено соотношение стромы и паренхимы. Так, пораженная ткань печени теряет балочную структуру, желчь не поступает в желчные протоки и всасывается в кровь. Атипизм опухолевых клеток выражается в полиморфизме, полихромазии, укрупнении ядер, полиплоидии, изменении состава хромосомного аппарата. Для опухолевой клетки характерна патология митоза. Выявлено нарушение выработки кейлонов — ингибиторов клеточного деления, что подтверждает влияние онкогенных факторов на генетический аппарат и неурегулированность роста опухоли. Атипизм проявляется и в состоянии субклеточных структур: свободное, не связанное с эндоплазматической сетью расположение рибосом, малое число митохондрий, их аномальное строение. Ядро опухолевой клетки крупное, с необычным расположением хроматина. Электронной микроскопией обнаруживаются клетки-гибриды. По строению опухоли клинически делят на доброкачественные и злокачественные. Доброкачественные опухоли характеризуются экспансивным ростом (опухоль растет, раздвигая окружающие ткани), имеют очерченные границы, сравнительно легко могут быть удалены. Злокачественные опухоли характеризуются инфильтративным ростом, опухолевые клетки врастают в окружающие ткани, границы распространения не поддаются определению. Опухолевые клетки обладают интенсивным ростом, способны проникать сквозь стенки сосудов и разноситься по организму, создавая новые очаги бластоматозного роста — метастазы. Клетки злокачественной опухоли эпителиального происхождения (рак) метастазируют преимущественно через сеть лимфатических сосудов, клетки злокачественной опухоли соединительной ткани и ее производных (саркома) разносятся преимущественно по кровеносным сосудам. Ввиду недостаточного кровоснабжения и высокой интенсивности роста в центре растущей злокачественной опухоли возникают очаги некроза, что ведет к прободению полых органов с вытекающими последствиями. Деление опухолей на доброкачественные и злокачественные несколько условно, ибо, например, доброкачественная опухоль, локализованная в ткани головного мозга, может быстро закончиться летальным исходом. Могут быть опухоли и промежуточного типа с местно деструи-рующим ростом. Они обладают способностью к инфильтрации окружающей ткани, но не метастазируют. Одна из них — базалиома, часто встречающаяся опухоль кожи. Биохимический атипизм проявляется тем, что опухолевые клетки богаты водой и бедны зольными элементами. Нарушение белкового обмена проявляется в повышенном содержании в клетках ДНК и РНК, изменении аминокислотного состава. Усилены протеолитические процессы, за счет чего клетки инфильтрируют окружающие ткани. В опухоли усилен распад углеводов, резко возрастает количество молочной и пировиноградной кислот. Изменение жирового обмена приводит к накоплению непредельных жирных кислот и кетоновых тел. Для некоторых опухолей определены ферменты-маркеры, облегчающие постановку диагноза. Своеобразны окислительно-восстановительные процессы в опухолевых клетках. Энергетическая атипичность характерна тем, что раковая клетка способна расщепить в 4—5 раз больше глюкозы, чем окислить ее до СО2 и Н2О. Преобладает анаэробный гликолиз. Так, за счет одной молекулы глюкозы синтезируются только две молекулы АТФ, тогда как в норме — 36. Митохондрии малы по размерам, их число в пораженной клетке невелико. Интенсивный рост клетки, синтез белка осуществляются за счет анаэробного гликолиза. Это одна из причин развития раковой кахексии (истощения). Физико-химический атипизм клеток опухоли проявляется снижением поверхностного натяжения, увеличением дисперсности коллоидов, высокой проницаемостью мембран, изменениями электрических характеристик опухолевых клеток. Антигенный атипизм опухолевой ткани характерен наличием специфических для каждой опухоли антигенов — антигенов опухолей, обусловленных ДНК- и РНК-содержащими вирусами, химическими канцерогенами. При развитии опухоли у эмбрионов появляются эмбриональные антигены, исчезающие в постнатальный период. Иммунологическое выявление атипичных антигенов, в том числе с помощью моноклональных антител, способствует постановке диагноза. |