Главная страница
Навигация по странице:

  • 12.1. НАРУШЕНИЯ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА

  • 12.2. НАРУШЕНИЯ ОСНОВНОГО ОБМЕНА

  • 12.3. НАРУШЕНИЯ УГЛЕВОДНОГО ОБМЕНА

  • Пат физиология. Учебные пособия для студентов высших учебных заведений


    Скачать 7.09 Mb.
    НазваниеУчебные пособия для студентов высших учебных заведений
    АнкорПат физиология.doc
    Дата30.01.2017
    Размер7.09 Mb.
    Формат файлаdoc
    Имя файлаПат физиология.doc
    ТипУчебные пособия
    #1334
    страница17 из 38
    1   ...   13   14   15   16   17   18   19   20   ...   38
    Глава 12. ПАТОЛОГИЧЕСКАЯ ФИЗИОЛОГИЯ ТИПОВЫХ НАРУШЕНИЙ ОБМЕНА ВЕЩЕСТВ
    12.1. НАРУШЕНИЯ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА
    Энергия, необходимая для жизни, добывается из солнечного света путем фотосинтеза, который совершается в хлорофиллсодержащих мембранах растений. Источником энергии для травояд­ных животных служат питательные вещества, синтезированные растениями. Фитофаги же становятся пищей зоофагов. Для жи­вотных тех и других видов поставщиком энергии являются орга­нические соединения, поступающие в организм. Основу жизнеде­ятельности всех представителей животного мира составляет энер­гетический обмен. Распад веществ, поступающих в организм, сопровождается выделением энергии, которая используется для соб­ственных нужд. Процессы катаболизма динамично сочетаются с анаболизмом. Катаболизм — это ферментативное расщепление молекул корма и части собственных молекул организма с осво­бождением заключенной там энергии. Анаболизм — это фермента­тивный синтез компонентов клетки, осуществляемый с потребле­нием энергии.

    Энергия освобождается в процессе гидролитического расщеп­ления углеводов, жиров и белков в желудочно-кишечном тракте, образования промежуточных и конечных продуктов обмена. Об­разование конечных продуктов сопряжено с высвобождением теп­ловой энергии и образованием макроэргических связей — аденозинтрифосфорной кислоты (АТФ), других высокоэнергетических соединений. За счет последующего распада АТФ до аденозинмонофосфата и аденозиндифосфата высвобождающаяся энергия удовлетворяет на 80 % энергозависимые процессы в клетке. К ниц относятся процессы синтеза, осмоса, механической работы, электровозбудимости и передачи электрического сигнала.

    Расстройство обмена энергии может происходить на разных этапах ее превращения: образования, транспортировки, использо­вания.

    Образование энергии может быть нарушено в результате де­фицита поступления в организм субстратов окисления при пол­ном, неполном или частичном голодании животных, заболевани­ях органов пищеварения, подавлении аппетита при инфекцион­ных и иных заболеваниях. Катаболические процессы преоблада­ют над анаболическими, развивается истощение. Кахексия, кроме того, может быть гормонального происхождения, результатом интенсивного распада злокачественных опухолей. В энер­гообразовании велика роль ферментов. Снижение их активности наблюдают при гипо- и авитаминозах. В результате подавляется гликолиз, повышается использование липидов и белков для энергетических нужд.

    Недостаток кислорода при аэробном окислении субстратов приводит к снижению энергообразования. Его дефицит является следствием либо гипоксемии, либо ишемизации тканей. Гипоксия центрального или локального происхождения — важнейшее пато­генетическое звено многих заболеваний. Она сопровождается прежде всего нарушением использования глюкозы клетками, на­коплением недоокисленных продуктов в клетке, торможение гликолиза.

    Образование энергии и ее нарушение зависят от сопряженной сти окисления и фосфорилирования. У здоровых животных ко­личество энергии окисления, идущее на синтез АТФ и рассеива­ющееся в виде первичной теплоты, распределяется почти поров­ну. Адаптация к окружающей среде может изменять эти соотно­шения. Приспособление животных к холоду сопровождается выделением большого количества первичного тепла, уменьшени­ем аккумулирования энергии в макроэргические соединения. Превышение внешней температуры комфортного уровня ведет к ограничению выделения первичной теплоты, повышению синте­за АТФ.

    Нарушение сопряжения между окислением и фосфорилированием наблюдают при различных формах патологии. Чаще всего энергия, освобождающаяся при переносе электронов, не транс­формируется в макроэргические соединения, а выделяется в виде первичного рассеянного тепла. Разобщение окисления и фосфорилирования легко может быть модулировано введением живот­ному 2,4-динитрофенола.

    АТФ синтезируется в митохондриях, но ее энергия использует­ся вне этих органелл с помощью креатинфосфокиназной системы. Она переносит энергию к мембранам, другим органоидам. Пора­жение системы переноса даже на фоне достаточного уровня АТФ может привести к необратимым повреждениям клетки. Одной из причин ингибиции креатинфосфокиназной системы является ишемия. Она сопровождается прекращением ресинтеза элементов системы и транспорта энергии, от чего особенно страдает сокра­тительная функция миофибрилл миокарда, поперечнополосатых мышц.

    Конечное звено обмена энергии в клетке — ее использование. За счет энергии АТФ осуществляются все синтетические процес­сы, их нарушения проявляются в скорости деления клеток, реге­нерации после повреждения, заживлении ран, восстановлении структуры и функции поврежденных органоидов, клеток, тка­ней.

    Энергозависима осмотическая функция клетки. Благодаря К+-, Na+-, Са2+-зависимым аденозинтрифосфатазам освобождается энергия, необходимая для поддержания ионного состава на внеш­ней и внутренней поверхностях мембран. Активный транспорт ионов, связанный с состоянием АТФ-аз, может быть нарушен. Проникновение Na+ в клетку стимулирует фосфорилирование, выход К+ сопровождается дефосфорилированием белков, поступ­ление Са2+ в кардиомиоциты вызывает экстрасистолию. Энерго­зависима ионная поляризация мембран возбудимых клеток, по­этому зарождение потенциала действия может быть заторможено блокированием АТФ, повышением активности АТФ-аз.

    Кумулированная в АТФ энергия необходима для реализации механических клеточных функций. Мышечное сокращение со­провождается потреблением энергии, освобождаемой расщеп­ляющейся АТФ. Ресинтез АТФ в мышце происходит благодаря креатинфосфату. Электромеханическое сопряжение может быть нарушено недостаточным количеством энергии макроэргичес-ких соединений или нарушением ее внутриклеточного транс­порта.
    12.2. НАРУШЕНИЯ ОСНОВНОГО ОБМЕНА
    Под основным обменом понимают суммарную величину энер­гетических трат животного организма в состоянии относительного покоя, натощак и при оптимальных внешних условиях. Эти энер­гетические траты у здоровых животных зависят от вида и породы, их анатомо-физиологических особенностей (полигастричные, моногастричные), массы тела, пола, возраста, индивидуальных осо­бенностей.

    На количество потребляемой организмом энергии влияют и внешние факторы — характер питания, сезон года (зимой выше, летом ниже), метеорологические условия (атмосферное давление, холод, тепло, ветер, дождь), санитарно-гигиенические параметры животноводческих помещений, вид продуктивности, интенсив­ность эксплуатации и др.

    Основной обмен в той или иной степени изменяется при забо­леваниях животных.

    Энергетические затраты у здоровых и больных животных опре­деляют путем прямой и непрямой калориметрии.

    Метод прямой калориметрии основан на точном учете выделяемого организмом тепла. Животное помещают в специальную камеру (калориметр), между двойными стенками ко­торой находится вода. По степени ее нагревания определяют ко­личество выделяемых объектом исследования калорий в единицу времени.

    Метод непрямой калориметрии основан на учете количества поглощаемого кислорода и выделяемой двуоки­си углерода. Калорический эквивалент кислорода зависит от ве­личины дыхательного коэффициента, т. е. отношения объема выделяемой двуокиси углерода к объему поглощенного за то же время кислорода. При окислении углеводов в организме плото­ядных животных дыхательный коэффициент равен 1, так как на 1 моль потребленного кислорода выделяется 1 моль двуокиси уг­лерода. При окислении жира, молекула которого содержит мно­го атомов водорода и мало атомов кислорода, дыхательный коэффициент равен 0,7, ибо СО2 образуется меньше, чем потребля­ется кислорода. При окислении белков дыхательный коэффици­ент равен 0,8.

    Результаты определения основного обмена методом прямой и непрямой калориметрии совпадают. Но в случаях патологии уста­новлены расхождения показателей. Объяснение этому феномену' было получено лишь после открытия сопряженности окисления и фосфорилирования.

    У разных представителей взрослых продуктивных животных основной обмен, по усредненным данным, равен (ккал/сут, 1 ккал = 4,19 кДж): лошадь—12000 ккал, бык —6200, свинья— 2400, овца — 1160, коза — 800, гусь — 270, курица — 115 ккал.

    Показателем патологии считают отклонение энергетического обмена на 10—15 % от оптимальных величин.

    Повышение основного обмена. Увеличение затрат энергии в со­стоянии относительного покоя свидетельствует о преобладании у животных катаболических процессов. К наиболее часто встречаю­щимся причинам следует отнести такие, которые сопровождаются разобщением процессов окисления и фосфорилирования. Особо важная роль в регулировании интенсивности обменных процессов принадлежит щитовидной железе. Тиреотоксикоз, обусловленный избыточным выделением тироксина, нарушает проницаемость митохондрий, влияет на сопряженность окисления и фосфорили­рования. Больше энергии рассеивается в виде первичной теплоты. Эффективность энергии корма уменьшается. Соматотропный гор­мон гипофиза, адреналин также обладают выраженным стимули­рующим действием на основной обмен. Свободное окисление ак­тивируют половые гормоны прогестерон, тестостерон.

    Помимо гормонального стимулирования к повышению основ­ного обмена приводит активация симпатической нервной систе­мы, эмоциональный стресс, лихорадочная реакция, когда подъем температуры на 1 °С повышает энергетические потребности на 10 %, интоксикация (раневая, раковая), одышка и тахикардия, на­блюдаемые в покое.

    Основной обмен усиливается в период сенсибилизации и после реинъекции антигена (аллергена).

    Снижение основного обмена. Наблюдают у животных, страдаю­щих от алиментарной недостаточности. Отсутствие или снижение поступления в организм субстратов окисления ведет к адаптивной перестройке обменных процессов. Атрофия мышц, гиподинамия способствуют падению уровня обмена.

    Особое значение имеет функциональная недостаточность мно­гих желез внутренней секреции (гипофункция гипофиза, надпо­чечников, щитовидной железы, половых желез).
    12.3. НАРУШЕНИЯ УГЛЕВОДНОГО ОБМЕНА
    В организме животных углеводы участвуют в разнообразных метаболических реакциях, взаимодействуя с белками и липидами. Одна из главных функций углеводов состоит в том, что они пред­ставляют собой основной энергетический субстрат для клеток всех тканей, но особенно нервной. Установлено, что 67 % глюкозы крови потребляют клетки центральной нервной системы.

    Нарушение переваривания и всасывания углеводов. Углеводы по­ступают в организм с растительной и животной пищей в виде моно-, ди- и полисахаридов. Может быть избыточное, а чаще не­достаточное снабжение животных углеводами. Последнее обстоя­тельство сразу сказывается на межуточном обмене веществ, так как для энергетических целей начинают использоваться жиры и в какой-то степени белки.

    Недостаточная обеспеченность организма углеводами возмож­на в результате нарушения процессов переваривания и всасыва­ния. Недостаточное поступление гликолитических ферментов поджелудочной железы и кишечного сока (амилаза, лактаза) при­ водит к выведению из организма молочного сахара и зерен крах­мала. Крахмал появляется в фекальных массах (амилорея), что служит косвенным признаком нарушения полостного переварива­ния углеводов. Дефицит лактазы не обеспечивает расщепления лактозы до галактозы и глюкозы. Лактоза всасывается в кровь и выводится почками (лактозурия). Ее прохождение через почечные канальцы обусловливает их повреждение. Неутилизированные са­хара усиливают в толстом кишечнике брожение, сопровождающееся метеоризмом и диареей.

    Полное расщепление углеводов до Сахаров в тонком кишечни­ке не всегда завершается всасыванием. Всасывание — процесс энергозависимый. Глюкоза транспортируется через мембрану энтероцита только при участии процессов фосфорилирования и пос­ледующего дефосфорилирования. Поэтому всасывание тормозит­ся при воспалительных явлениях, отеке слизистой оболочки ки­шечника, гипоксии, блокаде процессов фосфорилирования фер­ментными ядами, такими, как монойодуксусная кислота, флоридзин.

    Вторичная сахаридазная недостаточность полостного пищева­рения возможна при сердечно-сосудистой патологии, шоковых состояниях, язвенной болезни, опухолевых процессах в органах брюшной полости.

    Снижение секреции панкреатического и кишечного соков свя­зано с возникающим дефицитом пластических и энергетических субстратов.

    От кишечных ворсинок глюкоза по системе воротной вены по­ступает в печень. Одна из функций печени — гликогенообразовательная. В гепатоцитах глюкоза подвергается фосфорилированию с образованием глюкозо-6-фосфата, который используется для синтеза гликогена. В последующем под влиянием соответствую­щего фермента по мере необходимости происходит расщепление глюкозо-6-фосфата с освобождением свободной глюкозы, необхо­димой для поддержания уровня сахара в крови. Моносахара плаз­мы крови используются клетками тканей для синтеза гликогена, нуклеиновых кислот, мукополисахаридов, цереброзидов, протеогликанов.

    Нарушения синтеза гликогена (агликогеноз) могут быть гене­тически обусловленными (у животных не описаны) и появляющи­мися в процессе онтогенеза под влиянием токсигенов, гипоксии, авитаминозов, алиментарной недостаточности. Резко падает его содержание в печени, мышцах, почках, что, в свою очередь, рефлекторно усиливает липолиз в жировых депо. Гиперлипемия сопровождается инфильтрацией и жировой дистрофией, прежде всего печени.

    Активация распада, снижение содержания гликогена в печени, мышцах, других органах наблюдается при повышенной потребно­сти в энергии, обусловленной стрессогенными нагрузками, уси­ленной мышечной работой, алиментарной недостаточностью. Гликогенолиз усилен при лихорадке, бактерийной интоксикации, действии химических веществ (ртуть, мышьяк, фосфор), опухоле­вом росте, усиленной продукции адреналина и гликогена.

    У молодых животных возможен дефект ферментных систем, катализирующих расщепление гликогена. Поэтому он начинает интенсивно накапливаться прежде всего в печени, мышцах, поч­ках, сердце, ткани головного мозга. Причина гликогеноза пока не установлена. Полагают, что болезнь генетически обусловлена, пе­редается по аутосомно-рецессивному типу.

    Любые расстройства метаболизма гликогена сопровождаются снижением функциональной активности пораженных клеток (не­рвных, фагоцитов, миоцитов, кардиомиоцитов, гепатоцитов, энтероцитов и др.).

    Нарушения межуточного обмена углеводов. Непрерывный про­цесс гликолиза и окислительного фосфорилирования требует по­стоянной доставки тканям глюкозы и кислорода. Гипоксия, дру­гие патологические процессы в печени, мышцах нарушают мета­болические превращения углеводов. Снижение поступления кис­лорода приводит к преобладанию анаэробного гликолиза над фосфорилированием. Энергообеспеченность ткани и зависящая от нее функциональная активность клеток понижаются, нарастает содержание молочной и пировинограднои кислот, развивается лактоцидемический ацидоз. Так, если у клинически здоровых дойных коров содержание пировинограднои кислоты в крови со­ставляет 0,61 + 0,02 мг/100 мл, а молочной — 12,4 ± 0,57 мг/100 мл, то у коров с дистрофическими процессами в печени — 1,54 ± 0,03 мг/100 мл и 25,1 ± 1,09 мг/100 мл соответственно.

    Причиной нарушения межуточного обмена углеводов может быть недостаточное поступление в организм тиамина. Витамин В1 представляет собой кофермент карбоксилазы. Снижение ее актив­ности ведет к накоплению пировинограднои кислоты, появлению ее в крови и моче. Пируват оказывает выраженное токсическое действие на нервные клетки. Замедлена передача нервного им­пульса по аксонам и дендритам, снижена выработка медиатора — ацетилхолина. У животных, страдающих тиаминовой недостаточ­ностью, заболевание проявляется полиневритом. Наиболее чув­ствительны к заболеванию птицы (куры, голуби) и пушные звери (норки).

    Изменение содержания глюкозы в крови. Уровень углеводов в крови поддерживается нейрогуморальными механизмами. Стимуляция вентромедиальных ядер гипоталамуса активирует симпати­ческую иннервацию, повышает гликогенолиз в печени, вызывает гипергликемию. Раздражение вентролатеральных ядер стимулиру­ет парасимпатические нервы, тормозит гликогенолиз, снижает со­держание сахара в крови. Гормональная регуляция определяется соотношением инсулина и контринсулярных гормонов (АКТГ, СТГ, глюкокортикоидов). Изменение концентрации глюкозы в крови воспринимается глюкорецепторами мембран бета-клеток поджелудочной железы.

    Уровень глюкозы в крови здоровых взрослых животных колеб­лется (мг/100 мл): крупный рогатый скот — 40—60, лошади — 55— 95, свиньи — 45—75, собаки — 60—80, куры — 80—140, кролики — 75-85.

    У больных животных эти показатели могут существенно ме­няться за счет интенсивности поступления углеводов, синтеза гли­когена, уровня потребления глюкозы, соотношения этих процес­сов.

    Гипогликемия. Под гипогликемией понимают уменьше­ние содержания глюкозы в крови. Основные ее причины:

    • недостаточное поступление углеводов с кормами;

    • снижение гидролиза Сахаров в кишечнике и замедление их вса­сывания;

    • повышение тонуса парасимпатических нервов;

    • недостаточная выработка глюкокортикоидов, соматотропного и адренокортикотропного гормонов передней доли гипофиза;

    • повышение секреции инсулина, обусловленное гиперплазией островкового аппарата поджелудочной железы, развитием (у со­бак) раковой опухоли;

    • развитие гепатопатий (гепатит, острая жировая дистрофия, цирроз) с подавлением гликогенообразовательной функции;

    • гипофизарная кахексия;

    • интенсивная мышечная работа, особенно у лошадей при дли­тельных переходах, перевозке грузов;

    • передозировка инсулина, вводимого животным с лечебной целью.

    Последствия гипогликемии обусловлены прежде всего измене­ниями деятельности центральной нервной системы. Глюкоза для ее клеток является основным энергетическим субстратом. Недо­статок сахара приводит к истощению энергетических резервов в виде макроэргических соединений, усилению катаболических процессов, гипоксии структур мозга, внутриклеточной гипергид­ратации. Повышение проницаемости стенок сосудов сопровожда­ется отеком мозга, возможностью кровоизлияний и тромбоза.

    У жвачных животных возможно развитие гипогликемического синдрома, проявляющегося первоначально астеническим состоя­нием, затрудненностью передвижения. В последующем наблюда­ется беспокойство, появляются дрожь, клонические и тонические судороги, обильная саливация, непроизвольные дефекация и мочеиспускание. Одышка, тахикардия, зрачки расширены. Возмож­но развитие коматозного состояния.

    Высокопродуктивные коровы значительное количество глюкозы используют для синтеза молочного жира, что создает предпосылки для возможного развития у них гипогликемии. В печени снижается уровень гликогена, туда в изобилии поступает жир. Использование его для энергетических целей в повышенном количестве приводит к кетонемии и кетонурии. В крови и моче появляются избыточные количества кетоновых тел (ацетоуксусная кислота, бета-оксимасляная и ацетон), обладающих токсическими свойствами.

    Гипогликемия имеет немаловажное значение в генезе родиль­ного пареза у коров. Нервные явления бесследно исчезают после внутривенного введения глюкозы с кальция хлоридом.

    Компенсаторные реакции, возникающие у животных в ответ на снижение уровня сахара в крови, сводятся к активации симпато-адреналовой системы, повышению уровня контринсулярных,гор­монов в крови, стимулирующих процессы гликогенолиза, гликонеогенеза, липолиза. Свободные жирные кислоты снижают ути­лизацию глюкозы мышечной и жировой тканями, чем способству­ют задержке глюкозы в крови, выравниванию ее уровня.

    Гипергликемия. Под гипергликемией понимают увели­чение содержания глюкозы в крови. Выделяют следующие причи­ны возникновения гипергликемии:

    • алиментарная, вызванная избыточным поступлением легкоус­вояемых углеводов моногастричным животным. У жвачных угле­воды (клетчатка) сбраживаются, летучие жирные кислоты (уксус­ная, пропионовая) участвуют в синтезе гликогена;

    • нейрогенная, характерная для эмоционального стресса, боле­вого раздражения, органических поражений (опухоли, кровоизли­яния) центральных отделов нервной системы. Активируется симпатикоадреналовая система, повышается секреция катехоламинов, стимулируется гликогенолиз;

    • повышение продукции контринсулярных гормонов в передней доле гипофиза (АКТГ, СТГ) и коре надпочечников. Избыточная секреция СТГ сопровождается стимуляцией липолиза, чем огра­ничивается использование глюкозы мышцами. АКТГ поддержи­вает высокий уровень глюкокортикоидов, индуцирующих синтез ферментов гликонеогенеза из аминокислот;

    • абсолютная недостаточность инсулина вследствие снижения его синтеза или секреции. Это может быть следствием дефицита исходных аминокислот, ингибирования процессов перехода про-инсулина в инсулин, образования аутоантител к бета-клеткам ост-ровкового аппарата поджелудочной железы;

    • относительная недостаточность инсулина, обусловленная его повышенной инактивацией инсулиназой печени, почек, попереч­нополосатых мышц; снижением чувствительности рецепторных образований жировой и мышечной ткани.

    Гипергликемию выявляют у животных, больных сахарным диа­бетом, нефритом, циррозом печени; при болезни Ауески, миогло-бинурии лошадей, атониях преджелудков у жвачных.

    Гипергликемический синдром проявляется резко повышенным аппетитом (булимия) и избыточным приемом корма (полифагия), жаждой (полидипсия), общей вялостью, истощением, обильным диурезом (полиурия) и выделением глюкозы с мочой (глюкозурия).
    1   ...   13   14   15   16   17   18   19   20   ...   38


    написать администратору сайта