Главная страница
Навигация по странице:

  • Система охлаждения. Виды. Назначение, устройство, принцип действия.

  • Система охлаждения предназначена

  • Система охлаждения состоит из

  • Рубашка охлаждения двигателя

  • Расширительный бачок

  • Особенности конструкции и принцип работы двухтактного двигателя внутреннего сгорания

  • Рабочий цикл двухтактного ДВС

  • Рис. 1.8. Прямоточная клапанно-щелевая схема газообмена

  • Рис 1.9. Петлевая схема газообмена Рис 1.10. Прямоточная схема газообмена

  • Рис. 1.11 Кривошипно-камерная схема газообмена

  • Рис 1.12. Первый такт двухтактного ДВС

  • Рис 1.13. Второй такт двухтактного ДВС

  • Основные характеристики поршневых двигателей внутреннего сгорания. Принципы классификации и маркировка двигателей

  • Рис. 1.1. Классификация двигателей внутреннего сгорания. ХАРАКТЕРИСТИКИ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

  • Вопрос1 Нагрузочные стенды, применяемые при испытаниях автомобильных двигателей. Вопрос2 Классификация автомобильных эксплуатационных материалов.


    Скачать 7.22 Mb.
    НазваниеВопрос1 Нагрузочные стенды, применяемые при испытаниях автомобильных двигателей. Вопрос2 Классификация автомобильных эксплуатационных материалов.
    Анкорotvety_Gosy.docx
    Дата01.01.2018
    Размер7.22 Mb.
    Формат файлаdocx
    Имя файлаotvety_Gosy.docx
    ТипДокументы
    #13616
    страница10 из 21
    1   ...   6   7   8   9   10   11   12   13   ...   21


    Рабочий процесс четырехтактного дизельного двигателя включает следующие такты:

    1. Такт впуска. При движении поршня в цилиндре образуется разряжение и через воздушный фильтр в его полость поступает атмосферный воздух. При этом впускной клапан открыт.

    2. Такт сжатия. Поршень движется, сжимая поступивший воздух. Для надежного воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. Впускной и выпускной клапаны при этом закрыты.

    3. Такт расширения (или рабочий ход). Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, начинается процесс сгорания с быстрым повышением температуры и давления. В этот момент оба клапана закрыты. Под действием давления газов поршень перемещается, тем самым совершая полезную работу.

    4. Такт выпуска. Поршень перемещается вверх, выталкивая в выпускной коллектор отработанные газы, температура которых снижается.

    image268 image269

    Рис. 1.4. Впуск Рис 1.5. Сжатие

    image270 image271

    Рис. 1.6. Расширение Рис. 1.7. Выпуск

    .
    Вопрос38: Система охлаждения. Виды. Назначение, устройство, принцип действия.

    Система охлаждения служит для отвода тепла от наиболее нагретых деталей двигателя, поддерживая в системе оптимальную температуру (80-95 C).

    Существуют следующие виды систем охлаждения:

    • жидкостная (применяется закрытая жидкостная система охлаждения, связанная с атмосферой через клапан. Избыточное давление в системе позволяет увеличить температуру кипения жидкости, что исключает излишнее парообразование.)

    • воздушная (открытого типа);

    • комбинированная.

    Схема жидкостной системы охлаждения:

    p1070031

    1) Жидкостной циркуляционный насос (помпа)

    2) Нагреватель жидкости (рубашка охлаждения блока цилиндров и головки блока)

    3) Термостат

    3а) Перепускной клапан

    3б) Основной (радиаторный) клапан

    3в) Термочувствительный элемент

    4) Блок подогрева карбюратора и впускного коллектора

    5) Указатель температуры

    6) Радиатор отопителя салона

    6а) Кран управления радиатора

    7) Основной радиатор

    8) Вентилятор с электродвигателем

    9) Расширительный бачок

    10) Пробка расширительного бачка

    10а) Паровой клапан

    10б) Воздушный клапан

    11) Клапан слива охлаждающей жидкости

    При запуске двигателя жидкость циркулирует по малому кругу:

    насос (1)  нагреватель (2)  открытый клапан (3а)  насос (1)

    При прогреве двигателя

    80C клапан (3а) прикрывается, а клапан (3б) открывается. Работают оба круга циркуляции. При превышении 90С клапан (3а) полностью закрыт, а (3б) полностью открыт и вся жидкость циркулирует по большому кругу.

    Система охлаждения предназначена для поддержания нормального теплового режима двигателя.
    При работе двигателя температура в его цилиндрах поднимается выше 2000 градусов, а средняя составляет 800 - 900оС! Если не отводить тепло от «тела» двигателя, то через несколько десятков секунд после запуска, он станет уже не холодным, а безнадежно горячим. Следующий раз вы сможете запустить свой холодный двигатель только после его капитального ремонта.
    Система охлаждения нужна для отвода тепла от механизмов и деталей двигателя, но это только половина ее предназначения, правда - большая половина. Для обеспечения нормального рабочего процесса также важно - ускорять прогрев холодного двигателя. И это вторая часть работы системы охлаждения.
    Как правило, применяется жидкостная система охлаждения, закрытого типа, с принудительной циркуляцией жидкости и расширительным бачком (рис. 25).

    z_25

    Рис. 25 Схема системы охлаждения двигателя
    а) малый круг циркуляции
    а) большой круг циркуляции

    1 - радиатор; 2 - патрубок для циркуляции охлаждающей жидкости; 3 - расширительный бачок; 4 - термостат; 5 - водяной насос; 6 - рубашка охлаждения блока цилиндров; 7 - рубашка охлаждения головки блока; 8 - радиатор отопителя с электровентилятором; 9 - кран радиатора отопителя; 10 - пробка для слива охлаждающей жидкости из блока; 11 - пробка для слива охлаждающей жидкости из радиатора; 12 - вентилятор



    Система охлаждения состоит из:

    • рубашки охлаждения блока и головки блока цилиндров,

    • центробежного насоса,

    • термостата,

    • радиатора с расширительным бачком,

    • вентилятора,

    • соединительных патрубков и шлангов.

    На рисунке 25 Вы без труда можете различить два круга циркуляции охлаждающей жидкости. Малый круг циркуляции (стрелки красного цвета) служит для скорейшего прогрева холодного двигателя. А когда к красным стрелкам присоединяются синие, то, уже нагревшаяся жидкость, начинает циркулировать и по большому кругу, охлаждаясь в радиаторе. Руководит этим процессом автоматическое устройство – термостат.

    Для контроля за работой системы, на щитке приборов имеется указатель температуры охлаждающей жидкости. Нормальная температура охлаждающей жидкости при работе двигателя должна быть в пределах 80- 90оС (см. рис. 63).

    Рубашка охлаждения двигателя состоит из множества каналов в блоке и головке блока цилиндров, по которым циркулирует охлаждающая жидкость.

    Насос центробежного типа заставляет жидкость перемещаться по рубашке охлаждения двигателя и всей системе. Насос приводится в действие ременной передачей от шкива коленчатого вала двигателя. Натяжение ремня регулируется отклонением корпуса генератора (см. рис. 59а) или натяжным роликом привода распределительного вала двигателя (см. рис. 11б).

    Термостат предназначен для поддержания постоянного оптимального теплового режима двигателя. При пуске холодного двигателя термостат закрыт, и вся жидкость циркулирует только по малому кругу (рис. 25) для скорейшего ее прогрева. Когда температура в системе охлаждения поднимается выше 80 - 85О, термостат автоматически открывается и часть жидкости поступает в радиатор для охлаждения. При больших температурах термостат открывается полностью и уже вся горячая жидкость направляется по большому кругу для ее активного охлаждения.

    Радиатор служит для охлаждения проходящей через него жидкости за счет потока воздуха, который создается при движении автомобиля или с помощью вентилятора. В радиаторе имеется множество трубок и «перепонок», которые образуют большую площадь поверхности охлаждения.

    Расширительный бачок необходим для компенсации изменения объема и давления охлаждающей жидкости при ее нагреве и охлаждении.

    Вентилятор предназначен для принудительного увеличения потока воздуха проходящего через радиатор движущегося автомобиля, а также для создания потока воздуха в случае, когда автомобиль стоит без движения с работающим двигателем.
    Применяются два типа вентиляторов: постоянно включенный, с ременным приводом от шкива коленчатого вала и электровентилятор, который включается автоматически, когда температура охлаждающей жидкости достигает приблизительно 100 градусов.

    Патрубки и шланги служат для соединения рубашки охлаждения двигателя с термостатом, насосом, радиатором и расширительным бачком.
    В систему охлаждения двигателя включен также и отопитель салона. Горячая охлаждающая жидкость проходит через радиатор отопителя и нагревает воздух, подающийся в салон автомобиля. Температура воздуха в салоне регулируется специальным краном, которым водитель прибавляет или уменьшает поток жидкости, проходящий через радиатор отопителя.
    Воздушное охлаждение.

    Вентилятор направляет воздух вокруг оребренных стенок цилиндра. Преимущества: надежность, почти полное отсутствие ТО. Недостатки: увеличение массы и стоимости, недостаточное охлаждение при малых скоростях, неравномерность отвода тепла.
    Вопрос39: Особенности конструкции и принцип работы двухтактного двигателя внутреннего сгорания

    У двигателей такого типа отсутствуют клапаны (в отличие от четырехтактных ДВС), их роль выполняет поршень, который при своем перемещении закрывает впускные, выпускные и продувочные окна. Поэтому они более просты в конструкции.

    Рабочий цикл двухтактного ДВС

    Более полное время, отводимое на рабочий цикл, используется в двухтактных двигателях, в которых рабочий цикл совершается за два такта, т. е. за один оборот коленчатого вала. В отличие от четырехтактных двигателей, в двухтактных очистка рабочего цилиндра от продуктов сгорания и наполнение его свежим зарядом, или, другими словами, процесс газообмена, происходят только при движении поршня вблизи НМТ. При этом очистка цилиндра от выпускных газов осуществляется путем вытеснения их не поршнем, а предварительно сжатым до определенного давления воздухом или горючей смесью. Предварительное сжатие воздуха или смеси производится в специальном продувочном насосе или компрессоре, исполняемом в виде отдельного агрегата. В небольших двигателях в качестве продувочного насоса иногда используются внутренняя полость картера (кривошипная камера) и поршень двигателя.

    В двухтактных двигателях применяются различные схемы газообмена.
    Прямоточная клапанно-щелевая схема газообмена (рис. 1.8). Основными особенностями устройства двигателя этого типа являются: 1) впускные окна (1), расположенные в нижней части цилиндра, высота которых составляет около 10–20 % хода поршня. Открытие и закрытие впускных окон производится поршнем (3) при его движении в цилиндре;

    2) выпускные клапаны (4), размещенные в крышке цилиндра, с приводом от распределительного вала, частота вращения которого обеспечивает открытие клапанов один раз за один оборот коленчатого вала;
    image272

    Рис. 1.8. Прямоточная клапанно-щелевая схема газообмена

    3) продувочный насос нагнетает воздух под давлением через открытые окна (1) для очистки цилиндра от продуктов сгорания и наполнения свежим зарядом.

    Петлевая схема газообмена (рис. 1.9) значительно упрощает конструкцию двигателя по сравнению с клапанно-щелевой, но при этом ухудшается качество газообмена и возникают потери воздуха или смеси при наполнении.

    Петлевая схема газообмена отличается большим разнообразием конструктивного выполнения и широко применяется в двигателях различного назначения (от маломощных для мопедов до крупных, мощностью в несколько десятков тысяч киловатт для судов).

    image273 image274

    Рис 1.9. Петлевая схема газообмена Рис 1.10. Прямоточная схема газообмена

    Прямоточная схема газообмена с противоположно движущимися поршнями (рис. 1.10), в которой один поршень (3) управляет впускными окнами, а другой – выпускными, обеспечивает высокое качество газообмена.

    Для предварительного сжатия горючей смеси или воздуха, как было указано выше, в двухтактных двигателях может быть использована внутренняя полость картера (кривошипная камера).

    Такие двигатели называются двигателями с кривошипно-камерной схемой газообмена (рис. 1.11). Они имеют герметически закрытый картер, который и служит продувочным насосом.

    .

    image275image276

    Рис. 1.11 Кривошипно-камерная схема газообмена
    Преимущество двухтактных двигателей с кривошипно-камерной схемой газообмена – простота устройства. Однако при данном способе газообмена очистка цилиндра и наполнение его свежим зарядом по сравнению с другими способами происходят значительно хуже, в результате чего уменьшается мощность и ухудшается экономичность двигателя.

    На рис. 1.12 и 1.13 показана схема работы двухтактного двигателя с внутренним смесеобразованием и прямоточной клапанно-щелевой схемой газообмена.

    Первый такт. Первый такт соответствует ходу поршня ВМТ к НМТ (рис. 1.12). В цилиндре только что прошло сгорание (линия cz на индикаторной диаграмме) и начался процесс расширения газов, т. е. осуществляется рабочий ход. Несколько раньше момента прихода поршня к впускным окнам открываются выпускной клапан в крышке цилиндра, и продукты сгорания начинают вытекать из цилиндра в выпускной патрубок; при этом давление в цилиндре резко падает (участок тk на индикаторной диаграмме).
    image277image278
    Рис 1.12. Первый такт двухтактного ДВС
    Впускные окна открываются поршнем, когда давление в цилиндре становится примерно равным давлению предварительно сжатого воздуха в ресивере или немного выше его. Воздух, поступая в цилиндр через впускные окна, вытесняет через выпускные клапаны оставшиеся в цилиндре продукты сгорания и заполняет цилиндр (продувка), т. е. осуществляется газообмен. Таким образом, в течение первого такта в цилиндре происходит сгорание топлива, расширение газов, выпуск выпускных газов, продувка и наполнение цилиндра.
    Второй такт. Второй такт соответствует ходу поршня от НМТ к ВМТ (рис. 1.13). В начале хода поршня продолжаются процессы удаления выпускных газов, продувки и наполнения цилиндра свежим зарядом. Конец продувки цилиндра определяется моментом закрытия впускных окон и выпускных клапанов. Последние закрываются или одновременно с впускными окнами, или несколько ранее.

    image279image280

    Рис 1.13. Второй такт двухтактного ДВС
    Давление в цилиндре к концу газообмена в двухтактных двигателях несколько выше атмосферного и зависит от давления воздуха в ресивере. С момента окончания газообмена и полного перекрытия поршнем впускных окон начинается процесс сжатия воздуха. Когда поршень не доходит на 10–30° по углу поворота коленчатого вала до ВМТ (точка с'), в цилиндр через форсунку начинает подаваться топливо. Следовательно, в течение второго такта в цилиндре происходит окончание выпуска, продувка и наполнение цилиндра в начале хода поршня и сжатие при его дальнейшем ходе.

    В отличие от четырехтактного двигателя в двухтактном двигателе отсутствуют такты впуска и выпуска как самостоятельные такты, для которых требуется один оборот коленчатого вала. В двухтактных двигателях процессы выпуска и впуска осуществляются на небольших участках хода поршня, соответствующего основным тактам расширения и сжатия.


    Вопрос40: Основные характеристики поршневых двигателей внутреннего сгорания. Принципы классификации и маркировка двигателей.

    Классификация поршневых двигателей внутреннего сгорания приведена на рис. 1.1. Исходным признаком классификации принят род топлива, на котором работает двигатель.

    Двигатели внутреннего сгорания классифицируют также по следующим признакам:

    по способу воспламенения рабочей смеси – с принудительным воспламенением и с воспламенением от сжатия;

    по способу осуществления рабочего цикла – двухтактные и четырехтактные, с наддувом и без наддува;

    по способу смесеобразования – с внешним смесеобразованием (карбюраторные и газовые) и с внутренним смесеобразованием (дизельные и бензиновые с впрыском топлива в цилиндр);

    по способу охлаждения – с жидкостным и воздушным охлаждением;

    по расположению цилиндров – однорядные с вертикальным, наклонным горизонтальным расположением; двухрядные с V-образным и оппозитным расположением.

    image262

    Рис. 1.1. Классификация двигателей внутреннего сгорания.


    ХАРАКТЕРИСТИКИ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

    Работу двигателя в различных эксплуатационных условиях можно проанализировать, если установлена связь между его мощностью, крутящим моментом, расходом топлива и другими величинами и показателями, определяющими режим работы двигателя.

    Режим работы двигателя характеризуется нагрузкой и числом оборотов.

    Полной нагрузкой называется любой режим работы двигателя, независимо от числа оборотов, при полностью открытой дроссельной заслонке (карбюраторные и газовые двигатели) или полной подаче топлива (дизельные двигатели).

    Частичными нагрузками называются любые другие режимы работы двигателя при неполном открытии дроссельной заслонки или неполной подаче топлива. Частичные нагрузки оцениваются в долях от полной нагрузки с указанием соответствующего им числа оборотов.

    Зависимость какого-либо основного показателя (или показателей) работы двигателя от другого показателя или фактора, влияющего на работу двигателя, называется характеристикой двигателя.
    1   ...   6   7   8   9   10   11   12   13   ...   21


    написать администратору сайта