Семчиков Ю.Д. Высокомолекулярные соединения. Высокомолекулярные соединения
Скачать 12.87 Mb.
|
ГЛАВА 5. СИНТЕЗ ПОЛИМЕРОВ МЕТОДАМИ ЦЕПНОЙ И СТУПЕНЧАТОЙ ПОЛИМЕРИЗАЦИИ 5.1. Радикальная полимеризация При цепной полимеризации макромолекулы полимера образуются в результате раскрытия кратных связей или циклов мономеров при действии на них активных центров, находящихся на концах растущих цепей. Существует три типа активных центров в цепной полимеризации - радикал, катион и анион, в соответствии с чем различают радикальную, катионную и анионную полимеризации. Радикальной полимеризации подвержены исключительно соединения, содержащие двойные углерод-углеродные связи. В этом случае активным центром является карбрадикал, т.е. атом углерода, имеющий один неспаренный электрон. Такой атом (радикал) очень реакционноспособен из-за тенденции неспаренного электрона к образованию пары со вторым электроном. Соединения, содержащие π-связь, - подходящий объект для реализации этой тенденции, поскольку электроны π-связи связаны гораздо более слабо по сравнению с σ-связью. Поэтому радикал достаточно легко отбирает один из электронов π-связи с тем, чтобы образовать пару электронов, т. е. новую σ-связь: Описанный выше химический акт приведен на схеме применительно к полимеризации этилена; химические связи атомов, участвующих в реакции, для наглядности представлены электронными парами. Радикал, расположенный на конце растущей цепи, называется радикалом роста, а его реакция с мономером - основная реакция полимеризации - реакцией роста. Из схемы видно, что присоединение мономера к радикалу роста сопровождается регенерацией активного центра на конце цепи - атома углерода с неспаренным электроном. 5.1.1. Инициирование радикальной полимеризации Первичные радикалы, необходимые для инициирования радикальной полимеризации, могут быть получены в результате химических реакций и при физическом воздействии на мономер. Вещественное инициирование. При химическом или вещественном инициировании используют вещества, распадающиеся с образованием свободных радикалов, или смеси веществ, реагирующих между собой с образованием свободных радикалов. В качестве таких веществ обычно используют пероксиды и азосоединения, а также комбинации веществ, образующих окислительно-восстановительную систему. Среди пероксидов широкое применение нашли ацил-, алкил-, гидропероксиды и перэфиры. Круг азосоединений, практически используемых в качестве инициаторов, более ограничен. Наиболее известным среди них является 2,2'-азобис(изобутиронитрил), распадающийся с выделением азота: Благодаря последнему обстоятельству, этот и подобные ему азопроизводные используются в промышленности не только как инициаторы, но и для вспенивания пластмасс при получении пенопластов. Наиболее употребляемые в современной исследовательской и производственной практике инициаторы приведены в табл. 5.1 наряду с характеристиками их распада. Таблицу замыкают высокотемпературные инициаторы, распадающиеся с разрывом связи С-С. Окислительно-восстановительные системы делятся на две группы: органо- и водорастворимые. К первой группе относятся многочисленные комбинации пероксидов с аминами, из которых наиболее изученной является система пероксид бензоила - диметиланилин. В результате протекания окислительно-восстановительной реакции в этой системе, первичным актом которой является передача электрона от амина к пероксиду, образуется бензо-ат-радикал, который и инициирует далее процесс полимеризации: В рассматриваемом примере образование окислительно-восстановительной системы приводит к увеличению скорости полимеризации и снижению температуры ее инициирования по сравнению с процессом, инициируемым лишь одним пероксидом. Эти преимущества характерны и для других окислительно-восстановительных систем. Водорастворимые окислительно-восстановительные системы берут начало от классической системы: часто называемой реактивом Фентона. Они могут быть образованы и другими ионами металлов переменной валентности и пероксидами. Вместо последних в водных растворах обычно используют гидропероксиды. Наибольшее распространение к настоящему времени получили окислительно-восстановительные системы, содержащие в качестве окислителя персульфаты, а в качестве восстановителя - ионы металла переменной валентности или тиосульфаты: Таблица 5.1 Важнейшие инициаторы радикальной полимеризации Окончание таблицы 5.1 Они широко применяются в промышленности для инициирования эмульсионной и растворной полимеризации. Для правильного выбора инициатора полимеризации необходимо располагать данными, характеризующими скорость его распада при температуре реакции. Наиболее универсальной характеристикой является период полураспада инициатора 1/2, значения которого для многих инициаторов приведено в табл. 5.1. Обычно для инициирования полимеризации используют инициаторы, период полураспада которых соизмерим с продолжительностью процесса. Поскольку для реакций первого порядка 1/2 = ln2/kрасп, то, зная величину 1/2, можно рассчитать концентрацию инициатора в любой момент полимеризации в соответствии с уравнением: где kрасп - константа скорости мономолекулярной реакции распада инициатора; [I0] и [I] - начальная и текущая концентрации инициатора. Фотохимическое инициирование. При облучении мономера УФ-светом молекулы, поглотившие квант света, возбуждаются и затем распадаются на радикалы, способные инициировать полимеризацию: M+hv→M*→R1•+R2•. Однако прямое облучение мономера малоэффективно, поскольку кварцевое стекло обычно не пропускает УФ-свет в области, соответствующей его поглощению мономером (π-π*-переход, 200-220 нм), или пропускает его в незначительной степени. В том случае, когда мономер не поглощает прошедший свет, необходимо использовать фотосенсибилизатор (Z) - соединение, передающее энергию возбуждения другим молекулам: Z+hv→Z*, Z*+М→Z+М*→R1•+R2•+Z. Применение в качестве фотосенсибилизаторов красителей позволяет использовать для фотоинициирования видимую область света. В практических целях фотополимеризация обычно проводится в присутствии фотоинициаторов - веществ, распадающихся в требуемой области УФ-спектра с достаточно высоким квантовым выходом. В качестве фотоинициаторов могут быть использованы некоторые термические инициаторы, например, пероксиды или азосоединения, а также другие соединения. Наиболее эффективными фотоинициаторами являются ароматические кетоны и их производные, благодаря достаточно широкой области поглощения УФ-спектра и высокому квантовому выходу радикалов. Считается, что ароматические кетоны претерпевают фотохимическое превращение по двум направлениям: последнее из которых реализуется лишь в присутствии доноров водорода. В промышленности в качестве фотоинициаторов используют бензоин (1), бензилкеталь (2) и их многочисленные производные: Фотополимеризация используется для нанесения полимерных покрытий непрерывным способом на металл, дерево, керамику, световоды, в стоматологии для отверждения композиций зубных пломб. Особенно следует отметить применение фотополимеризации в фотолитографии, с помощью которой изготавливают большие интегральные схемы в микроэлектронике, а также печатные платы (матрицы) в современной технологии фотонабора, позволяющей исключить использование свинца. Существенным недостатком фотоинициирования является быстрое падение его эффективности с увеличением толщины облучаемого слоя вследствие поглощения излучения. По этой причине фотохимическое инициирование эффективно при возбуждении полимеризации в достаточно тонких слоях, порядка нескольких миллиметров. Радиохимическое инициирование. Излучение радиоактивных источников Со60, а также различного рода ускорителей включает набор частиц, таких как α-частицы, нейтроны, электроны и жесткое электромагнитное излучение. В отличие от фотоизлучения радиоактивное является ионизирующим и обладает гораздо большей проникающей способностью, что объясняется большей энергией его частиц. Ионизация облучаемого вещества является следствием выбивания электронов из его молекул, например мономера, частицами высокой энергии: М+излучение→М+•+е-. Радикалы, способные инициировать полимеризацию, возникают в результате дальнейших превращений в системе с участием возбужденных ионов, ионрадикалов и электронов, например: Наличие в облученном мономере свободных радикалов и ионов предопределяет возможность развития как радикальной, так и ионной полимеризации. В большинстве случаев результатом является радикальная полимеризация, однако, при низкой температуре в отсутствие воды и других примесей, дезактивирующих ионы, удалось наблюдать как катионную, так и анионную полимеризацию отдельных мономеров. Термическое инициирование. Имеется очень мало примеров термического инициирования полимеризации. К ним относятся, прежде всего, спонтанная полимеризация стирола и винилпиридинов. Считается, что механизм возникновения свободных радикалов при термическом инициировании является бимолекулярным, но достаточно надежно он выявлен лишь по отношению к стиролу. Первой стадией реакции является образование аддукта Дильса-Альдера из двух молекул стирола: На второй стадии имеет место перенос атома водорода от аддукта к молекуле стирола, что и приводит к возникновению радикалов, способных инициировать полимеризацию: В большинстве других случаев спонтанная термическая полимеризация обусловлена инициированием перекисями, которые легко образуются на свету даже при кратковременном контакте мономеров с кислородом воздуха. Эффективность инициирования. Эффективность инициирования ƒ равна доле радикалов, инициирующих полимеризацию, от их общего числа, которое соответствует спонтанному распаду определенного количества инициатора. Обычно 0,3 < ƒ < 0,8, т.е. заметно меньше единицы. Это объясняется двумя причинами - индуцированным распадом инициатора и побочными реакциями в «клетке». Индуцированный распад инициатора происходит в результате его реакции с радикалом роста, т. е. в результате передачи цепи на инициатор, которая будет рассмотрена далее. Из схемы реакции видно, что она приводит к уменьшению числа радикалов распавшегося пероксида, инициирующих полимеризацию: Эффект «клетки» заключается в том, что два радикала, образовавшиеся в результате распада инициатора, в рассматриваемом случае пероксида бензоила не могут в течение некоторого времени разойтись, поскольку их диффузии препятствуют окружающие молекулы мономера и растворителя. Этот момент весьма благоприятен для протекания побочных реакций, приводящих к их дезактивации. Одна из них приведена ниже (радикалы в «клетке» обозначены скобками): Первичные бензоатные радикалы покидают «клетку» путем диффузии и в результате реакции с мономером. Далее они могут декарбоксилироваться в результате чего реакция с мономером (инициирование) осуществляется с участием как бензоатных, так и фенильных радикалов: К побочным реакциям, снижающим эффективность инициирования, помимо приведенной выше реакции в «клетке», относятся следующие две реакции: В общем случае эффективность инициирования определяется природой инициатора, мономера, растворителя и конверсией. Большое значение имеет микровязкость среды, т.е. вязкость мономера или смеси мономер-растворитель. Она определяет подвижность «клетки»: с ее увеличением выход радикалов из «клетки» затрудняется, и эффективность инициирования падает. Еще в большей степени уменьшается эффективность инициирования с увеличением конверсии, т.е. доли мономера, превратившегося в полимер. 5.1.2. Элементарные реакции и кинетика полимеризации Неразветвленная цепная химическая реакция включает три последовательные стадии - инициирование, рост и обрыв кинетической цепи. Под последней понимается последовательность химических актов, возбужденных одной активной частицей или квантом. В цепной полимеризации, включая радикальную, развитие кинетической цепи сопровождается образованием цепи материальной. Поэтому для нее характерно наличие четвертой элементарной реакции - передачи кинетической цепи при ограничении цепи материальной. 1. Инициирование. Реакция инициирования включает два последовательных акта: образование первичных свободных радикалов в результате распада инициатора или облучения мономера и присоединение радикалов к мономерам: Скорость первой реакции много меньше скорости второй, поэтому именно она определяет скорость реакции инициирования: kин - константа скорости инициирования, kрасп - константа скорости распада инициатора, ƒ- эффективность инициирования. При фотохимическом инициировании где Iпог - интенсивность поглощенного излучения, β - число радикалов роста, т.е. растущих цепей, образованных при поглощении одного кванта. Первичный радикал обычно атакует «хвост» мономера, т.е. метиленовую группу двойной связи, поскольку в этом случае образуется радикал роста, стабилизированный в результате сопряжения с заместителем. 2. Рост цепи. Реакция роста протекает аналогично второй стадии реакции инициирования: Так же как и в предыдущем случае, радикал, на этот раз радикал роста, атакует метиленовую группу двойной связи, т.е. «хвост» мономера. Такой порядок присоединения определяется как «голова» (радикал) к «хвосту» (мономер). 3. Обрыв цепи. Обрыв цепи осуществляется посредством одного из двух возможных механизмов: а) соединения (рекомбинации) радикалов б) диспропорционирования радикалов в ходе которого атом водорода предконцевого углерода одного радикала переносится к концевому атому углерода другого радикала. Чаще реализуется первая реакция, например, при полимеризации стирола и акрилатов. Вторая реакция характерна для полимеризации метилметакрилата: доля радикалов роста этого мономера, реагирующих посредством диспропорционирования, составляет 80 % при 80 °С. Механизм обрыва можно определить, зная число конечных групп-фрагментов инициатора и число макромолекул. Если отношение первого ко второму обозначить через b, то λ. - доля радикалов, принимающих участие в диспропорционировании, равна через соединение (рекомбинация) - (1 - λ). Уравнение, связывающее скорость радикальной полимеризации V с концентрациями мономера [M] и инициатора [I], легко может быть получено при двух допущениях: концентрация радикалов [m•] с началом полимеризации быстро достигает постоянного значения и далее не изменяется (т. е. достигается стационарное состояние); реакционная способность макрорадикалов не зависит от степени их полимеризации. Первое допущение является следствием принципа стационарности Боденштейна, согласно которому при неразветвленной цепной реакции скорость образования радикалов равна скорости их гибели. Второе допущение основано на принципе Флори, согласно которому реакционная способность функциональной группы химического соединения не зависит от его молекулярной массы. Учитывая, что скорость полимеризации равна скорости роста цепи, и применяя к последней закон действия масс, получим: В данном случае [m•] обозначает концентрацию радикалов роста различной молекулярной массы. Вклад первичных радикалов R• в общую стационарную концентрацию радикалов ничтожен, т.к. непосредственно после образования они присоединяются к мономерам. В стационарном состоянии [m•] = const, что является следствием равенства скоростей образования и гибели радикалов (принцип стационарности): Исключая из выражения (5.7) концентрацию радикалов [m•], с помощью (5.8) получаем: Из уравнения (5.9) следует, что скорость радикальной полимеризации пропорциональна корню квадратному из концентрации инициатора. В большинстве случаев это так, но имеются два исключения. 1. При очень больших концентрациях инициатора возможен обрыв на первичных радикалах, что ведет к уменьшению порядка по концентрации инициатора. В предельном случае, когда все растущие цепи обрываются первичными радикалами, справедливо уравнение: где к'о - константа скорости реакции первичных радикалов с макрорадикалами. В этих условиях скорость полимеризации не зависит от концентрации инициатора. 2. При гетерогенной полимеризации, когда полимер выпадает в осадок, клубки макрорадикалов плотно свернуты, и активный конец радикала может оказаться в центре такого клубка и (или) внутри агрегата слипшихся макромолекул, недоступных для других радикалов. Это означает кинетическую гибель радикала роста, т.е. мономолекулярный обрыв. Пользуясь процедурой вывода уравнения (5.9), легко показать, что мономолекулярный обрыв ведет к первому порядку по скорости инициирования. Реально при гетерофазной полимеризации имеет место как моно-, так и бимолекулярный обрыв, поэтому порядок по концентрации инициатора 0,5 < n < 1. Порядок по концентрации мономера достаточно редко равен единице, как это можно было бы ожидать из уравнения (5.9). Обычно он заключен между 1 и 1.5, что предположительно объясняется влиянием мономера на эффективность инициирования и скорость распада инициатора. В последнем случае допускается образование комплекса мономер-инициатор. При фотохимическом инициировании уравнение начальной скорости полимеризации может быть получено аналогично (5.9). С учетом (5.5) имеем: При полимеризации в присутствии фотоинициатора А с известным коэффициентом поглощения более удобно уравнение скорости, включающее интенсивность облучения: где I0 - интенсивность падающего света, е - коэффициент экстинкции или молярный коэффициент поглощения, который выражается через л/(моль·см), l -длина пути поглощаемого света, [А] - концентрация вещества, поглощающего свет. Уравнение (5.12) применимо при фотоинициируемой полимеризации в тонких слоях. При полимеризации в более значительных реакционных объемах имеет место существенное ослабление светового потока, вследствие чего с увеличением размера реакционного сосуда скорость фотохимической полимеризации будет уменьшаться. При больших размерах с одной стороны сосуда мономер может остаться незаполимеризованным. В отсутствие реакций передачи цепи степень полимеризации определяется длиной кинетической цепи v, которая равна числу актов роста цепи, возбужденных одним первичным радикалом. Если обрыв цепи осуществляется путем диспропорционирования, = v, при соединении радикалов роста = 2v. Очевидно, что длина кинетической цепи равна скорости реакции роста, деленной на скорость реакции обрыва цепи: Выражение для [m•] можно получить двояким способом - исходя из уравнения скорости роста: или исходя из условия стационарности; используя (5.4) и (5.8) в одном случае и (5.14) - в другом, получаем из (5.13) два выражения для длины кинетической цепи: Из уравнения (5.16) следует, что в отсутствие заметной передачи цепи степень полимеризации обратно пропорциональна корню квадратному из концентрации инициатора. |