Главная страница
Навигация по странице:

  • Таблица 5.15 Влияние воды на степень полимеризации при поликонденсации с различными константами равновесия, [ M ]

  • 5.6.2. Кинетика поликонденсации

  • 5.6.3. Молекулярно-массовое распределение полимера при поликонденсации

  • 5.6.4. Разветвленные и сшитые полимеры

  • 5.6.5. Фенопласты, аминопласты Фенолформальдегидные смолы. Фенопласты

  • Семчиков Ю.Д. Высокомолекулярные соединения. Высокомолекулярные соединения


    Скачать 12.87 Mb.
    НазваниеВысокомолекулярные соединения
    АнкорСемчиков Ю.Д. Высокомолекулярные соединения.docx
    Дата28.01.2017
    Размер12.87 Mb.
    Формат файлаdocx
    Имя файлаСемчиков Ю.Д. Высокомолекулярные соединения.docx
    ТипДокументы
    #935
    страница24 из 33
    1   ...   20   21   22   23   24   25   26   27   ...   33

    Таблица 5.14 Влияние константы равновесия К на степень завершенности реакции поликонденсации X и среднечисловую степень полимеризации


    К, л/моль

    X



    1·10-4

    0,001

    1,01

    1·10-2

    0,09

    1,1

    1

    0,50

    2

    10

    0,76

    4,16

    1·102

    0,91

    11

    1·103

    0,97

    32,6

    1·104

    0,99

    101


    Таблица 5.15 Влияние воды на степень полимеризации при поликонденсации с различными константами равновесия, [M]0 = 5 моль/л


    К, л/моль




    2О], моль/л

    0,1

    20

    100

    500

    1,32·10-3

    5,05·10-5

    2,00·10-6

    1

    20

    100

    500

    1,32·10-2

    5,05·10-4

    2,00·10-5

    10

    20

    100

    500

    0,132

    5,05·10-3

    2,00·10-4

    100

    20

    100

    500

    1,316

    5,05·10-2

    2,00·10-1


    Из приведенных выше данных по константам равновесия следует, что ни одна из наиболее часто используемых реакций поликонденсации не удовлетворяет этим требованиям, по крайней мере, с точки зрения необходимости достижения достаточной молекулярной массы полимера (большей, чем 104). Поэтому на практике низкомолекулярный продукт, реже полимер, удаляют из зоны реакции, т.е. поликонденсация протекает в неравновесном режиме. Очевидно, что низкомолекулярный продукт не может быть удален полностью, поэтому необходимо знать его предельно допустимую концентрацию, которая может быть рассчитана, исходя из константы равновесия. В этом случае уравнение (5.90) необходимо записать так, чтобы выразить в явном виде концентрацию низкомолекулярного продукта:

    Далее, с привлечением уравнения Карозерса получаем:

    В табл. 5.15 приведены степени полимеризации продукта, получаемого при полиэтерификации в присутствии различных количеств воды. Из таблицы следует, что для получения достаточно высокомолекулярного полимера, даже при достаточно большой константе равновесия (порядка 102), допустимо содержание в реакционной смеси не более 1 % воды. Обычно вода и подобные ей низкомолекулярные продукты, например метанол, удаляются из реакционной среды отгонкой при атмосферном давлении, менее летучие продукты - отгонкой под вакуумом. Удалению летучих низкомолекулярных продуктов способствует высокая температура реакции, которая существенно превышает 200 °С при получении полиэфиров и полиамидов.
    5.6.2. Кинетика поликонденсации
    Рассмотрим основные кинетические закономерности поликонденсации на примере полиэтерификации. Катализаторами реакции этерификации являются кислоты и щелочи. Механизм кислотного катализа к настоящему времени надежно установлен. Он включает две стадии:

    1. Протонирование кислоты-реагента кислотой-катализатором (НА):

    2. Атаки протонированным реагентом гидроксильной группы спирта с последующим распадом интермедиата до продуктов реакции:

    Если в данной реакции удалять воду, то можно учитывать лишь прямое направление реакции. Тогда:

    Неопределяемая величина [С+(ОН)2] может быть исключена с помощью выражения (5.97):

    В результате получаем:

    В отсутствие внешнего катализатора его функцию выполняет кислота-мономер. Тогда:

    где К' = k3К. Поскольку при поликонденсации концентрации разных функциональных групп обычно равны (в целях получения высокомолекулярного полимера), то уравнение (5.99) можно упростить:

    Интегрирование этого уравнения приводит к выражению:

    и далее, с использованием понятия степени завершенности реакции (5.88), приходим к конечному результату:

    Уравнение (5.102), исходящее из третьего порядка скорости по концентрации мономера, достаточно хорошо описывает экспериментальные данные. Встречающиеся отклонения при средних и глубоких степенях завершенности связаны с изменением состояния реакционной среды - уменьшением полярности, вследствие исчерпания карбоксильных и гидроксильных (или других полярных) групп мономеров, и возрастанием вязкости.

    Степень ступенчатой полимеризации равна числу мономерных звеньев в цепи. При ступенчатой полимеризации двух гомофункциональных мономеров A-R-A и B-R-B степень полимеризации равна половине их количества в цепи. Сочетание (5.92) и (5.102) приводит к зависимости степени полимеризации от времени:

    Из этого уравнения следует, что темп нарастания молекулярной массы продукта поликонденсации уменьшается со временем. Данную зависимость не следует путать с той, что вытекает из уравнения Карозерса (5.92), согласно которому темп возрастания с ростом конверсии увеличивается.

    Изложенное выше касалось самокатализируемой поликонденсации. При наличии специально введенного, так называемого внешнего катализатора, уравнение скорости отвечает второму порядку по концентрации мономера:

    Интегрирование (5.104) приводит к (5.105) и далее с использованием (5.92) к уравнению (5.106):

    Из уравнения (5.106) следует, что при катализируемой поликонденсации имеет место линейная зависимость степени полимеризации от времени.

    На практике самокатализируемая реакция используется при получении полиамидов, тогда как при получении полиэфиров и фенопластов - продуктов поликонденсации фенола с формальдегидом - применяется катализатор.

    При предыдущем изложении предполагалось равенство концентраций мономеров, что является одним из условий получения высокомолекулярного полимера при поликонденсации. Количественной мерой, отражающей степень эквивалентности концентраций мономеров, является параметр

    вследствие [M1] ≥ [M2]. Связь среднечисловой степени полимеризации с параметром эквивалентности дается выражением:

    При строго эквивалентных количествах функциональных групп на концах макромолекул реакция между ними может продолжаться сколь угодно долго, теоретически - вплоть до образования гигантской макромолекулы. Из этого следует, что для стабилизации молекулярной массы полимера небольшой избыток одного из мономеров может оказаться полезным. В этом случае все макромолекулы будут иметь одинаковые функциональные группы, например что исключает возможность реакции между ними. Для этих целей используют также малые добавки монофункционального соединения. При этом уравнение (5.108) по-прежнему применимо, однако параметр r рассчитывается по-другому. При поликонденсации двух гомофункциональных мономеров ARA и BR1B в присутствии монофункционального соединения R2B

    где [ARA] = [BR1B]. Коэффициент 2 вводится потому, что эффект добавки R2B аналогичен эффекту избытка бифункционального мономера BR1B, a уравнение (5.109) получено применительно к реакции двух бифункциональных мономеров. При поликонденсации одного гетерофункционального мономера ARB в присутствии BR1

    5.6.3. Молекулярно-массовое распределение полимера при поликонденсации
    Рассмотрим молекулярно-массовое распределение полимера, полученного поликонденсацией мономера ARB или эквимолярной смеси ARA и BR1B. Используем статистический метод, который сводится к расчету вероятностей содержания в полимере макромолекул различной длины. В силу закона больших чисел эти вероятности равны численным долям Qn следовательно, подобный анализ приводит к числовой дифференциальной функции распределения. Предполагается, что все реакции между А и В равновероятны, т.е. не зависят от молекулярной массы n-меров.

    Макромолекула, содержащая p звеньев мономера ARB, образуется в том случае, когда прореагируют (p -1) групп А, а одна конечная группа останется непрореагировавшей. Вероятность того, что группа А в реакционной смеси окажется прореагировавшей, равна степени завершенности реакции X, непрореагировавшей - (1 - X). Отсюда:

    Таким образом, среднечисловые и среднемассовые дифференциальные функции распределения полимеров, полученных поликонденсацией со степенью завершенности X, описываются выражениями (5.111) и (5.115). При X = 1 обе функции не определены, поскольку теоретически в этом случае образуется одна гигантская макромолекула.

    Выражения для средних степеней полимеризации могут быть легко получены, исходя из их определения. Ранее показано, что
    = ∑pQn
    где - среднечисловая степень полимеризации, Qn - числовая доля макромолекул (олигомеров) со степенью полимеризации р. Вводя (5.111), получаем:

    Ряд (5.116) является сходящимся, так как X < 1, его сумма равна
    =
    Это уравнение, называемое уравнением Карозерса, было получено ранее (5.92).

    Далее рассмотрим среднемассовую степень полимеризации
    = ∑pQn
    где Qw - массовая доля макромолекул со степенью полимеризации р. Совмещая (5.115) с (5.116), получаем:

    Сумма этого ряда равна:

    Согласно определению параметра полидисперсности,

    Из (5.119) следует, что в процессе поликонденсации ширина распределения возрастает, при этом параметр полидисперсности стремится к двум, что характерно для наиболее вероятного распределения Флори.
    5.6.4. Разветвленные и сшитые полимеры
    Рассмотренные выше линейные полимеры получаются в результате конденсации мономеров с функциональностью ƒ = 2. Под последней понимается

    число функциональных реакционноспособных групп, приходящихся на одну молекулу мономера. Если хотя бы у одного мономера ƒ > 2, то в результате поликонденсации образуются разветвленные или сшитые полимеры. Разветвленные полимеры образуются при совместной поликонденсации двухфункцио-нального мономера ARB с трехфункциональным (ƒ = 3) мономером A3R1:

    Молекулярно-массовые характеристики разветвленных полимеров описываются достаточно простыми соотношениями, полученными в результате применения статистического метода, подобно тому, как это было продемонстрировано выше для линейных полимеров. В частности, параметр полидисперсности описывается следующим выражением:

    где ƒ- функциональность «разветвляющего» мономера. Из (5.120) следует, что разветвленные полимеры являются менее полидисперсными по сравнению с линейными. При X → 1 и r → 1 это уравнение упрощается до:

    Параметр полидисперсности линейных полимеров при X → 1 приближается к двум. Из (5.121) следует, что при сополиконденсации ARB с двух-, трех- и четырехфункциональными мономерами / → 1,5; 1,33; 1,25 соответственно.

    Сшитые полимеры образуются при совместной поликонденсации двух бифункциональных мономеров ARA и BR1B с трех или более функциональными R2Bƒ. На первой стадии реакции, когда образуются линейные и разветвленные олигомеры, реакционная система сохраняет текучесть. На глубоких стадиях, когда образуется сшитый полимер, текучесть реакционной массы теряется. Эта важная технологическая особенность трехмерной поликонденсации приводит к необходимости совмещать заключительную стадию реакции с формованием товарного изделия. Получаемые таким образом сшитые полимеры называются термореактивными или термореактопластами.

    Степень завершенности реакции, при которой происходит образование нетекучего геля вследствие образования трехмерной сетки, называется точкой гелеобразования Хг. Из изложенного выше ясно, как важно знать Хг конкретной системы. Метод расчета точки гелеобразования впервые разработал Карозерс. Этот метод сводится к нахождению степени завершенности реакции, при которой степень полимеризации стремится к бесконечности. Карозерс ввел понятие средней функциональности мономеров:

    где Ni- число молекул мономера с функциональностью ƒi, ∑Ni, - общее число молекул мономеров, ∑Niƒi, - общее число функциональных групп, участвующих в поликонденсации. Оказалось, что ХГ связана с ƒср простой зависимостью:

    Рассмотрим конкретный пример. При поликонденсации глицерина (1) и фталевой кислоты (2) ƒ1, = 3, ƒ1 = 2. Следовательно, при эквимолярном количестве функциональных групп в реакции должны участвовать 2 моля глицерина и 3 моля фталевой кислоты. Это означает, что на пять молекул реагентов приходится 12 функциональных групп, и ƒср = 12/5 = 2,4. Из уравнения (5.123) следует, что для такой системы ХГ = 0,883.
    5.6.5. Фенопласты, аминопласты
    Фенолформальдегидные смолы. Фенопласты. Фенолформальдегидная смола была первым полимером, освоенным промышленным производством еще в 1909 г. Патент на ее производство был выдан Бакеланду, благодаря чему первый синтетический полимер долгое время назывался бакелитом. Термин «смола», в данном случае фенолформальдегидная, означает низкомолекулярный преполимер, т.е. растворимый продукт (олигомер), который при производстве готовых изделий сшивается с образованием трехмерного нерастворимого полимера.

    Реакция между фенолом и формальдегидом катализируется как основаниями, так и кислотами. Преполимеры, получаемые при некотором избытке формальдегида в результате реакции, катализируемой сильными основаниями, называются резолами. Реакция начинается с образования фенолоспиртов:

    которые затем конденсируются:

    В результате образуются преполимеры-олигомеры с молекулярной массой более 103 и широким молекулярно-массовым распределением. Сшивание нейтрализованных резольных смол осуществляется нагреванием до 150-170°С. При образовании сшитого полимера протекают те же две реакции конденсации, что и при образовании резолов. При этом гидроксильные группы фенола практически не затрагиваются в реакции поликонденсации.

    При кислотном катализе реакции между фенолом и формальдегидом образуются олигомеры, называемые новолаками или новолачными смолами, которые так же, как и в предыдущем случае, включают фенолоспирты и диоксифенилметаны различного строения и молекулярной массы. Однако, при получении новолаков, в отличие от резолов, в избытке берется фенол, поэтому ароматические ядра в основном связываются метиленовыми мостиками в орто-орто, орто-пара и пара-пара положениях. Конечный продукт реакции является линейным олигомером общей формулы:

    Отверждение новолачных смол обычно проводится при нагревании до 160°С в присутствии уротропина (CH2)6N4 (гексаметилентетрамина), который принимает участие в сшивке молекул олигомера. Образующиеся с его участием сшивки способны к дальнейшим превращениям в результате термического распада, в конечном итоге остаются метиленовые, бензиламинные и некоторое количество азометиленовых сшивок -N=CH-. Содержание последних очень мало, однако, они придают желтоватую окраску полимеру. С учетом сказанного, фрагмент структуры сшитого полимера может быть представлен следующим образом:

    Аминопласты. К этому классу относятся сшитые полимеры, получаемые из фенола и аминов - мочевины и меламина. Преполимерами аминопластов являются аминофенольные смолы (олигомеры), получаемые конденсацией указанных выше реагентов, катализируемой кислотами или основаниями. Процесс напоминает тот, что рассмотрен выше для преполимеров фенола и альдегида. Из мочевины и формальдегида могут образоваться метилолмочевины различного строения:

    из которых относительно устойчивыми являются лишь монометилол и, в меньшей степени, диметилолмочевина, поскольку только они могут быть выделены из реакционной смеси.

    Предполагается, что олигомеры образуются в основном за счет реакций с участием монометилолмочевины. В сильнокислых средах происходит быстрая дегидратация метилолмочевины. Поэтому в производственном процессе метилольные производные мочевины получают в нейтральной или слабощелочной среде (рН 7-8), затем в слабокислой среде осуществляют их конденсацию при 70-120°С. Конденсация монометилолмочевины приводит к образованию линейных и разветвленных олигомеров. Основными реакциями являются:

    1. Самоконденсация:

    2. Дегидратация, сопровождаемая циклизацией:

    3. Конденсация метилолмочевины с мочевиной:

    Отверждение олигомеров осуществляется в присутствии органических и неорганических кислот как катализаторов при температуре 120-140 °С. Реакции с участием олигомеров, аналогичные реакциям 1 -3, могут привести к образованию метиленовых, диметилэфирных и циклосодержащих сшивок:

    В приведенном выше фрагменте структуры аминопласта содержится ди-метилэфирная группа, эта же группа образует одну из возможных сшивок. Наличие диметилэфирной группы в аминопластах приводит к выделению фогида при их нагреве. Это обстоятельство имеет негативное значение с точки зрения экологии и медицины.
    1   ...   20   21   22   23   24   25   26   27   ...   33


    написать администратору сайта